UVB radiation-induced signaling in mammalian cells involves two major pathways: one that is initiated through the generation of DNA photoproducts in the nucleus and a second one that occurs independently of DNA damage and is characterized by cell surface receptor activation. The chromophore for the latter one has been unknown. Here, we report that the UVB response involves tryptophan as a chromophore. We show that through the intracellular generation of photoproducts, such as the arylhydrocarbon receptor (
Non-dioxin-like polychlorinated biphenyls (ndl-PCBs) are a subclass of persistent bioaccumulative pollutants able to enter the food chain. We investigated the transfer of ndl-PCBs from contaminated feed into meat and liver of fattening chickens. A total of 48 chicks were divided into five treatment and one control groups. Treated animals were fed with contaminated diets (11.7 ± 0.4 μg/kg sum of indicator ndl-PCBs; 88% dry matter (DM)) before slaughter for different subperiods of time: 16, 23, 28, 32, and 36 days for groups 1−5, respectively. One day after the end of each subperiod, three animals per group were slaughtered to determine the congener-specific ndl-PCB content. All remaining animals were fed the control feed until slaughter on day 37 to probe depuration. We used these data to generate congener-specific physiologically based toxicokinetic (PBTK) models for indicator ndl-PCBs. The models show that PCBs 28, 138, 153, and 180 form a more slowly eliminated cluster (with an observed transfer rate into meat over 74% and observed half-lives over 8.7 days) than PCBs 52 and 101 (with a transfer rate under 13% and half-lives under 2.6 days). Our simulations show that ndl-PCB levels in feed lower than 3.9 (long 56-day) or 4.4 μg/kg (short 37-day fattening period) would be necessary to ensure the current maximum level in muscle meat (fat basis), according to EU Regulations 1881/2006 and 1259/2011. The PBTK models are made available in the Python and Food Safety Knowledge Exchange formats.
The industrial hemp sector is growing and, in recent years, has launched many novel hemp-derived products, including animal feed. It is, however, unclear to what extent individual cannabinoids from industrial hemp transfer from the feed into products of animal origin and whether they pose a risk for the consumer. Here we present the results of a feeding experiment with industrial hemp silage in dairy cows. Hemp feeding included changes in feed intake, milk yield, respiratory and heart rates, and behaviour. We combined liquid chromatography–tandem mass spectrometry-based analyses and toxicokinetic computer modelling to estimate the transfer of several cannabinoids (Δ9-tetrahydrocannabinol (Δ9-THC), Δ8-THC, Δ9-tetrahydrocannabinolic acid, Δ9-tetrahydrocannabivarin, 11-OH-Δ9-THC, 11-nor-9-carboxy-Δ9-THC, cannabidiol, cannabinol and cannabidivarin) from animal feed to milk. For Δ9-THC, which has a feed-to-milk transfer rate of 0.20% ± 0.03%, the acute reference dose for humans was exceeded in several consumer groups in exposure scenarios for milk and dairy product consumption when using industrial hemp to feed dairy cows.
Understanding the transfer of non-dioxin-like polychlorinated biphenyls (ndl-PCBs) into foods of animal origin is crucial for human health risk assessment. In two experiments, we investigated the transfer of ndl-PCBs from contaminated feed and soil into eggs and meat of laying hens. The transfer from the feed was investigated with 30 laying hens. The treated hens were divided into two groups fed a contaminated diet (12.8 μg/kg sum of indicator ndl-PCBs; 88% dry matter (DM)) for 28 and 63 days, respectively, and then experienced a depuration period of 100 days with control feed. The transfer from soil was investigated with 72 laying hens kept in three separate outdoor pens (with three levels of ndl-PCB soil contamination) for 168 days. In both experiments, eggs were collected and analyzed for ndl-PCBs. In the second experiment, animals (n = 3 at the beginning, n = 6 per group after 42, 84, and 168 days) were slaughtered to determine ndl-PCBs in meat (breast muscle tissue) fat. The transfer of ndl-PCB from both feed and soil was clearly measurable and concentrations in eggs quickly exceeded maximum levels. Clear differences between individual congeners were observed. In particular, the low-chlorinated ndl-PCBs 52 and 101 are hardly found in eggs, despite their relatively high concentration in feed and soil. PCBs 138, 153, and 180, on the other hand, were found in large proportions in eggs and meat.
This paper describes a method for the determination of priority β-agonists in urine based on a fully automated sample preparation procedure using an online TurboFlow™ chromatography clean-up step and determination with Orbitrap™ mass analyser technology. The principle of the method was the enrichment of the β-agonists after enzymatic hydrolysis overnight on a small column packed with a special stationary phase (TurboFlow™) while flushing away sample matrix and interfering compounds. Thereafter, the analytes were transferred onto an analytical column and detected by liquid chromatography/high-resolution mass spectrometry in full-scan mode at a resolution of R = 50,000 FWHM (full width at half maximum) and in higher energy collisional dissociation (HCD) scan mode at a resolving power of 10,000 FWHM. The optimisation of each step of the method, such as selection of the TurboFlow™ and analytical column as well as sample loading and elution parameters were performed using a standard solution containing salbutamol, clenbuterol and mabuterol at a concentration of 100 µg l(-1). The developed automated sample preparation significantly improved the throughput and efficiency of the previously used screening method and it resulted in a considerable reduction in analysis time. Validation experiments including 24 β-agonists in urine gave decision limits (CCα) between 0.05 and 0.35 µg l(-1). The repeatability of analyses for urine samples spiked at 0.5 µg l(-1) was within the range of 5-26% and recoveries for all compounds were within 89-107%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.