Accurate 3D shape measurement is of big importance for industrial inspection. Because of the robustness, accuracy and ease of use optical measurement techniques are gaining importance in industry. For fast 3D measurements on big surfaces fringe projection is commonly used: A projector projects fringes onto the object under investigation and the scattered light is recorded by a camera from a triangulation angle. Thus, it is possible reaching a depth resolution of about one by 10.000 of the measurement field size (e.g. 100 µm for a 1 m sized field).For non-or low scattering objects it is common to put scattering material like particle spray onto the object under investigation. Objects where this is not allowed are often regarded as problematic objects for full field non-coherent optical measurement techniques. The solution is to switch from fringe projection to fringe reflection.The fringe reflection technique needs a simple setup to evaluate a fringe pattern that is reflected from the surface under investigation. Like for fringe projection the evaluated absolute phase identifies the location of the originating fringe. This allows identifying the reflection angles on the object for every camera pixel. The results are high resolution local gradients on the object which can be integrated to get the 3D shape. The achievable depth resolution compared to fringe projection is much better and reaches to a depth resolution down to 1 nm for smooth surfaces.We have proven the ability, robustness and accuracy of the technique for various technical objects and also fluids. A parallel paper of this conference 'Evaluation Methods for Gradient Measurement Techniques' 1 picks up further processing of the evaluated data and explains in more detail the performed calculations. This paper mainly concentrates on the fringe reflection principle, reachable resolution and possible applications.
We report on the development of a versatile and portable optical profilometer and show its applicability for quick and accurate digitization of 3-D objects. The profilometer is an advanced fringe-projection system that uses a calibrated LCD matrix for fringe-pattern generation, a "hierarchical" sequence of fringe patterns to demodulate the measured phase, and a photogrammetric calibration technique to obtain accurate 3-D data in the measurement volume. The setup in itself is mechanically stable and allows for a measurement volume of about 110.5 m 3 . We discuss the calibration of the sensor and demonstrate the process of recording phase data for several sub-views, generating 3-D "point clouds" from them, and synthesizing the CAD representation of an entire 3-D object by merging the data sets.
The advantages of spatial phase shifting (SPS) compared with temporal phase shifting in the field of electronic speckle pattern interferometry are described. Some periodic phase reconstruction errors occurring in SPS are discussed. It is shown that these errors become minimal for a spatial phase-shift angle of 2pi/3. Furthermore, a modified phase reconstruction formula is presented by which the noise in the reconstructed phase map is reduced.
Many optical metrology methods deliver 2D fields of gradients, such as shearography, Shack-Hartmann sensors and the fringe reflection technique that produce gradients for deformation, wave-front shape and object shape, respectively.The evaluation for gradient data usually includes data processing, feature extraction and data visualization. The matters of this talk are optimized and robust processing methods to handle and prepare the measured gradients. Special attention was directed to the fact that optical measurements typically produce data far from ideal behavior and that parts of the measured area are usually absent or invalid. A robust evaluation must be capable to deliver reliable results with non perfect data and the evaluation speed should be sufficient high for industrial applications.Possible data analysis methods for gradients are differentiation and further integration as well as vector processing when orthogonal gradients are measured. Evaluation techniques were investigated and optimized (e.g. for effective bump and dent analysis). Key point of the talk will be the optimized data integration that delivers the potential of measured gradients. I.e. for the above mentioned examples: the deformation, wave-front and object shape are delivered by successful data integration. Local and global existing integration methods have been compared and the optimum techniques were combined and improved for an accelerated and robust integration technique that is able to deal with complicated data validity masks and noisy data with remaining vector rotation which normally defeats a successful integration.The evaluation techniques are compared, optimized and results are shown for data from shearography and the fringe reflection technique (, which is demonstrated in talk "High Resolution 3D Shape Measurement on Specular Surfaces by Fringe Reflection" 1 ).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.