Dynamic analysis of redox-based processes in living cells is now restricted by the lack of appropriate redox biosensors. Conventional redox-sensitive GFPs (roGFPs) are limited by undefined specificity and slow response to changes in redox potential. In this study we demonstrate that the fusion of human glutaredoxin-1 (Grx1) to roGFP2 facilitates specific real-time equilibration between the sensor protein and the glutathione redox couple. The Grx1-roGFP2 fusion protein allowed dynamic live imaging of the glutathione redox potential (E(GSH)) in different cellular compartments with high sensitivity and temporal resolution. The biosensor detected nanomolar changes in oxidized glutathione (GSSG) against a backdrop of millimolar reduced glutathione (GSH) on a scale of seconds to minutes. It facilitated the observation of redox changes associated with growth factor availability, cell density, mitochondrial depolarization, respiratory burst activity and immune receptor stimulation.
SummaryThe cellular glutathione redox buffer is assumed to be part of signal transduction pathways transmitting environmental signals during biotic and abiotic stress, and thus is essential for regulation of metabolism and development. Ratiometric redox-sensitive GFP (roGFP) expressed in Arabidopsis thaliana reversibly responds to redox changes induced by incubation with H 2 O 2 or DTT. Kinetic analysis of these redox changes, combined with detailed characterization of roGFP2 in vitro, shows that roGFP2 expressed in the cytosol senses the redox potential of the cellular glutathione buffer via glutaredoxin (GRX) as a mediator of reversible electron flow between glutathione and roGFP2. The sensitivity of roGFP2 toward the glutathione redox potential was tested in vivo through manipulating the glutathione (GSH) content of wild-type plants, through expression of roGFP2 in the cytosol of low-GSH mutants and the endoplasmic reticulum (ER) of wild-type plants, as well as through wounding as an example for stress-induced redox changes. Provided the GSH concentration is known, roGFP2 facilitates the determination of the degree of oxidation of the GSH solution. Assuming sufficient glutathione reductase activity and non-limiting NADPH supply, the observed almost full reduction of roGFP2 in vivo suggests that a 2.5 mM cytosolic glutathione buffer would contain only 25 nM oxidized glutathione disulfide (GSSG). The high sensitivity of roGFP2 toward GSSG via GRX enables the use of roGFP2 for monitoring stressinduced redox changes in vivo in real time. The results with roGFP2 as an artificial GRX target further suggest that redox-triggered changes of biologic processes might be linked directly to the glutathione redox potential via GRX as the mediator.
SummaryReduction-oxidation-sensitive green fluorescent protein (roGFP1 and roGFP2) were expressed in different subcellular compartments of Arabidopsis and tobacco leaves to empirically determine their performance as ratiometric redox sensors for confocal imaging in planta. A lower redoxdependent change in fluorescence in combination with reduced excitation efficiency at 488 nm resulted in a significantly lower dynamic range of roGFP1 than for roGFP2. Nevertheless, when targeted to the cytosol and mitochondria of Arabidopsis leaves both roGFPs consistently indicated redox potentials of about -320 mV in the cytosol and -360 mV in the mitochondria after pH correction for the more alkaline matrix pH. Ratio measurements were consistent throughout the epidermal cell layer, but results might be attenuated deeper within the leaf tissue. Specific interaction of both roGFPs with glutaredoxin in vitro strongly suggests that in situ both variants preferentially act as sensors for the glutathione redox potential. roGFP2 targeted to plastids and peroxisomes in epidermal cells of tobacco leaves was slightly less reduced than in other plasmatic compartments, but still indicated a highly reduced glutathione pool. The only oxidizing compartment was the lumen of the endoplasmic reticulum, in which roGFP2 was almost completely oxidized. In all compartments tested, roGFP2 reversibly responded to perfusion with H 2 O 2 and DTT, further emphasizing that roGFP2 is a reliable probe for dynamic redox imaging in planta. Reliability of roGFP1 measurements might be obscured though in extended time courses as it was observed that intense irradiation of roGFP1 at 405 nm can lead to progressive photoisomerization and
BackgroundRoux-en-Y gastric bypass (RYGB) is an effective means to achieve sustained weight loss for morbidly obese individuals. Besides rapid weight reduction, patients achieve major improvements of insulin sensitivity and glucose homeostasis. Dysbiosis of gut microbiota has been associated with obesity and some of its co-morbidities, like type 2 diabetes, and major changes of gut microbial communities have been hypothesized to mediate part of the beneficial metabolic effects observed after RYGB. Here we describe changes in gut microbial taxonomic composition and functional potential following RYGB.MethodsWe recruited 13 morbidly obese patients who underwent RYGB, carefully phenotyped them, and had their gut microbiomes quantified before (n = 13) and 3 months (n = 12) and 12 months (n = 8) after RYGB. Following shotgun metagenomic sequencing of the fecal microbial DNA purified from stools, we characterized the gut microbial composition at species and gene levels followed by functional annotation.ResultsIn parallel with the weight loss and metabolic improvements, gut microbial diversity increased within the first 3 months after RYGB and remained high 1 year later. RYGB led to altered relative abundances of 31 species (P < 0.05, q < 0.15) within the first 3 months, including those of Escherichia coli, Klebsiella pneumoniae, Veillonella spp., Streptococcus spp., Alistipes spp., and Akkermansia muciniphila. Sixteen of these species maintained their altered relative abundances during the following 9 months. Interestingly, Faecalibacterium prausnitzii was the only species that decreased in relative abundance. Fifty-three microbial functional modules increased their relative abundance between baseline and 3 months (P < 0.05, q < 0.17). These functional changes included increased potential (i) to assimilate multiple energy sources using transporters and phosphotransferase systems, (ii) to use aerobic respiration, (iii) to shift from protein degradation to putrefaction, and (iv) to use amino acids and fatty acids as energy sources.ConclusionsWithin 3 months after morbidly obese individuals had undergone RYGB, their gut microbiota featured an increased diversity, an altered composition, an increased potential for oxygen tolerance, and an increased potential for microbial utilization of macro- and micro-nutrients. These changes were maintained for the first year post-RYGB.Trial registrationCurrent controlled trials (ID NCT00810823, NCT01579981, and NCT01993511).Electronic supplementary materialThe online version of this article (doi:10.1186/s13073-016-0312-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.