Extracellular vesicles (EVs), including exosomes and microvesicles, are 30–800 nm vesicles that are released by most cell types, as biological packages for intercellular communication. Their importance in cancer and inflammation makes EVs and their cargo promising biomarkers of disease and cell-free therapeutic agents. Emerging high-resolution cytometric methods have created a pressing need for efficient fluorescent labeling procedures to visualize and detect EVs. Suitable labels must be bright enough for one EV to be detected without the generation of label-associated artifacts. To identify a strategy that robustly labels individual EVs, we used nanoFACS, a high-resolution flow cytometric method that utilizes light scattering and fluorescence parameters along with sample enumeration, to evaluate various labels. Specifically, we compared lipid-, protein-, and RNA-based staining methods and developed a robust EV staining strategy, with the amine-reactive fluorescent label, 5-(and-6)-Carboxyfluorescein Diacetate Succinimidyl Ester, and size exclusion chromatography to remove unconjugated label. By combining nanoFACS measurements of light scattering and fluorescence, we evaluated the sensitivity and specificity of EV labeling assays in a manner that has not been described for other EV detection methods. Efficient characterization of EVs by nanoFACS paves the way towards further study of EVs and their roles in health and disease.
We have shown that following priming with replicating adenovirus type 5 host range mutant (Ad5hr)-human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) recombinants, boosting with gp140 envelope protein enhances acute-phase protection against intravenous simian/human immunodeficiency virus (SHIV) 89.6P challenge compared to results with priming and no boosting or boosting with an HIV polypeptide representing the CD4 binding site of gp120. We retrospectively analyzed antibodies in sera and rectal secretions from these same macaques, investigating the hypothesis that vaccine-elicited nonneutralizing antibodies contributed to the better protection. Compared to other immunized groups or controls, the gp140-boosted group exhibited significantly greater antibody activities mediating antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cell-mediated viral inhibition (ADCVI) in sera and transcytosis inhibition in rectal secretions. ADCC and ADCVI activities were directly correlated with antibody avidity, suggesting the importance of antibody maturation for functionality. Both ADCVI and percent ADCC killing prechallenge were significantly correlated with reduced acute viremia. The latter, as well as postchallenge ADCVI and ADCC, was also significantly correlated with reduced chronic viremia. We have previously demonstrated induction by the prime/boost regimen of mucosal antibodies that inhibit transcytosis of SIV across an intact epithelial cell layer. Here, antibody in rectal secretions was significantly correlated with transcytosis inhibition. Importantly, the transcytosis specific activity (percent inhibition/total secretory IgA and IgG) was strongly correlated with reduced chronic viremia, suggesting that mucosal antibody may help control cell-to-cell viral spread during the course of infection. Overall, the replicating Ad5hr-HIV/SIV priming/gp140 protein boosting approach elicited strong systemic and mucosal antibodies with multiple functional activities associated with control of both acute and chronic viremia.
Previously, chronic-phase protection against SHIV89.6P challenge was significantly greater in macaques primed with replicating adenovirus type 5 host range mutant (Ad5hr) recombinants encoding HIVtat and env and boosted with Tat and Env protein compared with macaques primed with multigenic adenovirus recombinants (HIVtat, HIVenv, SIVgag, SIVnef) and boosted with Tat, Env, and Nef proteins. The greater protection was correlated with Tat- and Env-binding Abs. Because the macaques lacked SHIV89.6P-neutralizing activity prechallenge, we investigated whether Ab-dependent cellular cytotoxicity (ADCC) and Ab-dependent cell-mediated viral inhibition (ADCVI) might exert a protective effect. We clearly show that Tat can serve as an ADCC target, although the Tat-specific activity elicited did not correlate with better protection. However, Env-specific ADCC activity was consistently higher in the Tat/Env group, with sustained cell killing postchallenge exhibited at higher levels (p < 0.00001) for a longer duration (p = 0.0002) compared with the multigenic group. ADCVI was similarly higher in the Tat/Env group and significantly correlated with reduced acute-phase viremia at wk 2 and 4 postchallenge (p = 0.046 and 0.011, respectively). Viral-specific IgG and IgA Abs in mucosal secretions were elicited but did not influence the outcome of the i.v. SHIV89.6P challenge. The higher ADCC and ADCVI activities seen in the Tat/Env group provide a plausible mechanism responsible for the greater chronic-phase protection. Because Tat is known to enhance cell-mediated immunity to coadministered Ags, further studies should explore its impact on Ab induction so that it may be optimally incorporated into HIV vaccine regimens.
Many viral infections, including HIV, exhibit sex-based pathogenic differences. However, few studies have examined vaccine-related sex differences. We compared immunogenicity and protective efficacy of monomeric SIV gp120 with oligomeric SIV gp140 in a pre-clinical rhesus macaque study and explored a subsequent sex bias in vaccine outcome. Each immunization group (16 females, 8 males) was primed twice mucosally with replication-competent Ad-recombinants encoding SIVsmH4 env/rev, SIV239 gag and SIV239 nefΔ1–13 and boosted twice intramuscularly with SIVmac239 monomeric gp120 or oligomeric gp140 in MF59 adjuvant. Controls (7 females, 5 males) received empty Ad and MF59. Up to 9 weekly intrarectal challenges with low-dose SIVmac251 were administered until macaques became infected. We assessed vaccine-induced binding, neutralizing, and non-neutralizing antibodies, Env-specific memory B cells and plasmablasts/plasma cells (PB/PC) in bone marrow and rectal tissue, mucosal Env-specific antibodies, and Env-specific T-cells. Post-challenge, only one macaque (gp140-immunized) remained uninfected. However, SIV acquisition was significantly delayed in vaccinated females but not males, correlated with Env-specific IgA in rectal secretions, rectal Env-specific memory B cells, and PC in rectal tissue. These results extend previous correlations of mucosal antibodies and memory B cells with protective efficacy. The gp140 regimen was more immunogenic, stimulating elevated gp140 and cyclic V2 binding antibodies, ADCC and ADCP activities, bone marrow Env-specific PB/PC, and rectal gp140-specific IgG. However, immunization with gp120, the form of envelope immunogen used in RV144, the only vaccine trial to show some efficacy, provided more significant acquisition delay. Further over 40 weeks of follow-up, no gp120 immunized macaques met euthanasia criteria in contrast to 7 gp140-immunized and 2 control animals. Although males had higher binding antibodies than females, ADCC and ADCP activities were similar. The complex challenge outcomes may reflect differences in IgG subtypes, Fc glycosylation, Fc-R polymorphisms, and/or the microbiome, key areas for future studies. This first demonstration of a sex-difference in SIV vaccine-induced protection emphasizes the need for sex-balancing in vaccine trials. Our results highlight the importance of mucosal immunity and memory B cells at the SIV exposure site for protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.