Preeclampsia usually occurs after week 20 of gestation and features hypertension and an increased peripheral vascular resistance. The mechanisms are unknown (1). Several lines of evidence implicate angiotensin II (Ang II) and its binding site, the AT 1 receptor. Preeclamptic patients manifest exaggerated pressor responses to Ang II. Gant et al. (2) infused Ang II into pregnant patients from week 10 of pregnancy onward and observed that those who later developed sustained hypertension required diminishing amounts of Ang II to obtain a similar pressor response. One possible explanation for this phenomenon might be increased expression of the AT 1 receptor. Baker et al. (3) also performed Ang II infusion experiments in pregnant patients and identified five patients who subsequently developed hypertension after week 20. These women were compared with seven who did not develop hypertension. The platelets of the preeclamptic women exhibited increased calcium signaling and increased binding sites for Ang II. The authors suggested increased stimulus-effect coupling in terms of Ang II responses in preeclamptic patients. We also observed increased cytosolic calcium responses in the platelets of preeclamptic patients in response to Ang II (4). However, circulating levels of Ang II are not increased in preeclampsia (5-7). In an earlier study of patients with essential hypertension, we observed a remarkably high incidence of circulating antibodies that cross-reacted with the α1-adrenoceptor and stimulated its signaling mechanism (8). In the present study, we tested the hypothesis that circulating antibodies to a vascular receptor might be responsible for the hypertension observed in preeclampsia. We employed a bioassay of beating neonatal rat cardiomyocytes, as well as Western blotting and confocal microscopy. We found that immunoglobulin from preeclamptic women contains a factor that binds to, and stimulates, the AT 1 receptor. MethodsCell culture. Isolation and cultivation of neonatal heart cells were performed as described previously (9). Briefly, single cells were dissociated from the minced ventricles of Wistar rats (1-2 days old) with a 0.25% solution of crude trypsin and were cultured as monolayers with a density of 800 cells/mm 2 in Halle SM 20-I medium equilibrated with humidified air. The medium contained 10% heat-inactivated FCS and 2 µmol/l fluorodeoxyuridine (Serva, Heidelberg, Germany) the latter to prevent proliferation of nonmuscle cells. On the third or fourth days, the cells were incubated for 2 h in 2 ml fresh serum-containing medium. Seven to 10 selected cells or synchronously contracting cell clusters per flask were counted for 15 s. This procedure was Immune mechanisms and the renin-angiotensin system are implicated in preeclampsia. We investigated 25 preeclamptic patients and compared them with 12 normotensive pregnant women and 10 pregnant patients with essential hypertension. Antibodies were detected by the chronotropic responses to AT 1 receptor-mediated stimulation of cultured neonatal rat cardio...
Biosensors can be miniaturized by either injecting smaller volumes into micro- and nanofluidic devices or immersing increasingly sophisticated particles known as 'smart dust' into the sample. The term 'smart dust' originally referred to cubic-millimetre wireless semiconducting sensor devices that could invisibly monitor the environment in buildings and public spaces, but later it also came to include functional micrometre-sized porous silicon particles used to monitor yet smaller environments. The principal challenge in designing smart dust biosensors is integrating transport functions with energy supply into the device. Here, we report a hybrid microdevice that is powered by ATP and relies on antibody-functionalized microtubules and kinesin motors to transport the target analyte into a detection region. The transport step replaces the wash step in traditional double-antibody sandwich assays. Owing to their small size and autonomous function, we envision that large numbers of such smart dust biosensors could be inserted into organisms or distributed into the environment for remote sensing.
The time of pregnancy, birth, and lactation, is characterized by numerous specific alterations in several systems of the maternal body. Peripartum-associated changes in physiology and behavior, as well as their underlying molecular mechanisms, have been the focus of research since decades, but are still far from being entirely understood. Also, there is growing evidence that pregnancy and lactation are associated with a variety of alterations in neural plasticity, including adult neurogenesis, functional and structural synaptic plasticity, and dendritic remodeling in different brain regions. All of the mentioned changes are not only believed to be a prerequisite for the proper fetal and neonatal development, but moreover to be crucial for the physiological and mental health of the mother. The underlying mechanisms apparently need to be under tight control, since in cases of dysregulation, a certain percentage of women develop disorders like preeclampsia or postpartum mood and anxiety disorders during the course of pregnancy and lactation. This review describes common peripartum adaptations in physiology and behavior. Moreover, it concentrates on different forms of peripartum-associated plasticity including changes in neurogenesis and their possible underlying molecular mechanisms. Finally, consequences of malfunction in those systems are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.