Small-molecule stabilization of protein-protein interactions (PPIs) is a promising concept in drug discovery, however the question how to identify or design chemical starting points in a "bottom-up" approach is largely unanswered. We report a novel concept for identifying initial chemical matter for PPI stabilization based on imine-forming fragments. The imine bond offers a covalent anchor for sitedirected fragment targeting, whereas its transient nature enables efficient analysis of structure-activity relationships. This bond enables fragment identification and optimisation using protein crystallography. We report novel fragments that bind specifically to a lysine at the PPI interface of the p65subunit-derived peptide of NF-kB with the adapter protein 14-3-3. Those fragments that subsequently establish contacts with the p65-derived peptide, rather than with 14-3-3, efficiently stabilize the 14-3-3/p65 complex and offer novel starting points for molecular glues.
PURPOSE
Intraarterial delivery of chemotherapeutic agents offers a new and exciting opportunity for the treatment of advanced intraocular retinoblastoma. It allows local delivery of relatively high doses of chemo agents while bypassing general blood circulation. For this reason we sought to revisit some of the FDA approved drugs for the treatment of retinoblastoma.
METHODS
High throughput screening (HTS) of 2,640 approved drugs and bioactive compounds resulted in the identification of cytotoxic agents with potent activity toward both the Y79 and RB355 human retinoblastoma cell lines. Subsequent profiling of the drug candidates was performed in a panel of ocular cancer cell lines. Induction of apoptosis in Y79 cells was assessed by immunofluorescence detection of activated Caspase-3. Therapeutic effect was evaluated in a xenograft model of retinoblastoma.
RESULTS
We have identified several FDA approved drugs with potent cytotoxic activity toward retinoblastoma cell lines in vitro. Among them were several cardiac glycosides, a class of cardenolides historically associated with the prevention and treatment of congestive heart failure. Caspase-3 activation studies provided an insight into the mechanism of action of cardenolides in retinoblastoma cells. When tested in a xenograft model of retinoblastoma, the cardenolide ouabain induced complete tumor regression in the treated mice.
CONCLUSIONS
We have identified cardenolides as a new class of antitumor agents for the treatment of retinoblastoma. We propose that members of this class of cardiotonic drugs could be repositioned for retinoblastoma if administered locally via direct intraarterial infusion.
Epoxidation of Electron Deficient Alkenes Using tert-Butyl Hydroperoxide and 1,5,7-Triazabicyclo[4.4.0]dec-5-ene and Its Derivatives. -Sensitive epoxyquinones are efficiently prepared by enone epoxidation using cyclic guanidines (I) as promoters. Enantiopure guanidine derivatives show promising results in asymmetric epoxidation reactions. The investigation is presented in connection with syntheses of epoxyquinone antibiotics.
Small-molecule stabilization of protein-protein interactions (PPIs) is a promising concept in drug discovery, however the question how to identify or design chemical starting points in a "bottom-up" approach is largely unanswered. We report a novel concept for identifying initial chemical matter for PPI stabilization based on imine-forming fragments. The imine bond offers a covalent anchor for sitedirected fragment targeting, whereas its transient nature enables efficient analysis of structure-activity relationships. This bond enables fragment identification and optimisation using protein crystallography. We report novel fragments that bind specifically to a lysine at the PPI interface of the p65subunit-derived peptide of NF-kB with the adapter protein 14-3-3. Those fragments that subsequently establish contacts with the p65-derived peptide, rather than with 14-3-3, efficiently stabilize the 14-3-3/p65 complex and offer novel starting points for molecular glues.
Protein–protein
modulation has emerged as a proven approach
to drug discovery. While significant progress has been gained in developing
protein–protein interaction (PPI) inhibitors, the orthogonal
approach of PPI stabilization lacks established methodologies for
drug design. Here, we report the systematic ″bottom-up″
development of a reversible covalent PPI stabilizer. An imine bond
was employed to anchor the stabilizer at the interface of the 14-3-3/p65
complex, leading to a molecular glue that elicited an 81-fold increase
in complex stabilization. Utilizing protein crystallography and biophysical
assays, we deconvoluted how chemical properties of a stabilizer translate
to structural changes in the ternary 14-3-3/p65/molecular glue complex.
Furthermore, we explore how this leads to high cooperativity and increased
stability of the complex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.