Recently, we reported on soil fate of SDZ residues amended with pig manure treated with ¹⁴C-labeled sulfadiazine ¹⁴C-SDZ). The first objective of the present study was to determine whether this strategy can be substituted by application of ¹⁴C-SDZ to soil. The second objective was to characterize non-extractable SDZ residues by fractionation, size exclusion chromatography (SEC) and solid state ¹³C-NMR. The fate of ¹⁴C-SDZ was examined for 28 d, using two soils with and without amendment of pig manure. Mineralization of ¹⁴C-SDZ was low; extractable residues decreased to 7-30%. Compared to the previous study, results were similar. ¹⁴C-SDZ derived bound radioactivity was found in HCl-washings, fulvic, humic acids and humin. According to SEC, one bound ¹⁴C portion (70%) co-eluted with fulvic acids (above 910 g mol⁻¹); the other consisted of adsorbed/entrapped ¹⁴C-SDZ. The ¹³C-SDZ study was performed for 30 d; humic acids were examined by ¹³C-NMR. A signal (100-150 ppm) was referred to ¹³C-SDZ. SEC and ¹³C-NMR demonstrated rapid integration of SDZ into humics.
The metabolic fate of (14)C-phenyl-labeled herbicide clodinafop-propargyl (CfP) was studied for 28 days in lab assays using a soil from Germany (Ap horizon, silt loam, and cambisol). Mineralization amounted to 12.40% of applied (14)C after 28 days showing a distinct lag phase until day 7 of incubation. Portions of radioactivity extractable by means of 0.01 M CaCl2 solution (bioavailable fraction) decreased rapidly and were 4.41% after 28 days. Even immediately after application, only 57.31% were extracted with the aqueous solvent. Subsequent extraction using accelerated solvent extraction (ASE; acetonitrile/water 4:1, v/v) released 39.91% of applied (14)C with day 0 and 26.16% with day 28 of incubation from the samples. Non-extractable portions of radioactivity thus, increased with time amounting to 11.99% (day 0) and 65.00% (day 28). A remarkable increase was observed between 14 and 28 days correlating with the distinct increase of mineralization. No correlation was found throughout incubation with general microbial activity as determined by DMSO reduction. Analysis of the CaCl2 and ASE extracts by radio-TLC, radio-HPLC and GC/MS revealed that CfP was rapidly cleaved to free acid clodinafop (Cf), which was further (bio-) transformed; DT50 values (based on radio-TLC detection of the parent compound) were far below 1 day (CfP) and about 7 days (Cf). TLC analysis pointed to 2-(4-hydroxyphenoxy)-propionic acid as further metabolite. Due to fractionation of non-extractable residues, most of the (14)C was associated with fulvic and humic acids, portions in humin fractions and non-humics were moderate and low, respectively. Using a special strategy, which included pre-incubation of the soil with CfP and then mineralization of (14)C-CfP as criterion, a microorganism was isolated from the soil examined. The microorganism grew using CfP as sole carbon source with concomitant evolution of (14)CO2. The bacterium was characterized by growth on commonly used carbon sources and by 16S rDNA sequence analysis. The sequence exhibited high similarity with that of Rhodococcus wratislaviensis (99.56%; DSM 44107, NCIMB 13082).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.