Heuristic search algorithms for goal-probability maximization (MaxProb) have been known since a decade. Yet prior work on heuristic functions for MaxProb relies on determinization, not actually taking the probabilities into account. Here we begin to fix this, by introducing MaxProb pattern databases (PDB). We show that, for the special case of PDBs in contrast to more general abstractions, abstract transitions have a unique probability so that the abstract planning task is still an MDP. The resulting heuristic functions are admissible, i.e., they upper-bound the real goal probability. We identify conditions allowing to admissibly multiply heuristic values across several PDBs. Our experiments show that even non-probabilistic PDB heuristics often outperform previous MaxProb heuristics, and that our new probabilistic PDBs can in turn yield significant performance gains over non-probabilistic ones.
Stochastic shortest-path problems (SSP) are an important subclass of MDPs for which heuristic search algorithms exist since over a decade. Yet most known heuristic functions rely on determinization so do not actually take the transition probabilities into account. The only exceptions are Trevizan et al.'s heuristics hpom and hroc, which are geared at solving more complex (constrained) MDPs. Here we contribute pattern database (PDB) heuristics for SSPs, including an additivity criterion. These new heuristics turn out to be very competitive, even when using a simple systematic generation of pattern collections up to a fixed size. In our experiments, they beat determinization-based heuristics, and tend to yield better runtimes than hpom and hroc.
Recently, pattern databases have been extended to probabilistic planning, to derive heuristics for the objectives of goal probability maximization and expected cost minimization. While this approach yields both theoretical and practical advantages over techniques relying on determinization, the problem of selecting the patterns in the first place has only been scantily addressed as yet, through a method that systematically enumerates patterns up to a fixed size. Here we close this gap, extending pattern generation techniques known from classical planning to the probabilistic case. We consider hill-climbing as well as counter-example guided abstraction refinement (CEGAR) approaches, and show how they need to be adapted to obtain desired properties such as convergence to the perfect value function in the limit. Our experiments show substantial improvements over systematic pattern generation and the previous state of the art.
In classical planning, cost partitioning is a powerful method which allows to combine multiple admissible heuristics while retaining an admissible bound. In this paper, we extend the theory of cost partitioning to probabilistic planning by generalizing from deterministic transition systems to stochastic shortest path problems (SSPs). We show that fundamental results related to cost partitioning still hold in our extended theory. We also investigate how to optimally partition costs for a large class of abstraction heuristics for SSPs. Lastly, we analyze occupation measure heuristics for SSPs as well as the theory of approximate linear programming for reward-oriented Markov decision processes. All of these fit our framework and can be seen as cost-partitioned heuristics.
The merge-and-shrink framework is a powerful tool to construct state space abstractions based on factored representations. One of its core applications in classical planning is the construction of admissible abstraction heuristics. In this paper, we develop a compositional theory of merge-and-shrink in the context of probabilistic planning, focusing on stochastic shortest path problems (SSPs). As the basis for this development, we contribute a novel factored state space model for SSPs. We show how general transformations, including abstractions, can be formulated on this model to derive admissible and/or perfect heuristics. To formalize the merge-and-shrink framework for SSPs, we transfer the fundamental merge-and-shrink transformations from the classical setting: shrinking, merging, and label reduction. We analyze the formal properties of these transformations in detail and show how the conditions under which shrinking and label reduction lead to perfect heuristics can be extended to the SSP setting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.