Abstract.A Solovay function is a computable upper bound g for prefixfree Kolmogorov complexity K that is nontrivial in the sense that g agrees with K, up to some additive constant, on infinitely many places n. We obtain natural examples of Solovay functions by showing that for some constant c0 and all computable functions t such that c0n ≤ t(n), the time-bounded version K t of K is a Solovay function.By unifying results of Bienvenu and Downey and of Miller, we show that a right-computable upper bound g of K is a Solovay function if and only if Ωg is Martin-Löf random. Letting Ωg = 2 −g(n) , we obtain as a corollary that the Martin-Löf randomness of the various variants of Chaitin's Ω extends to the time-bounded case in so far as Ω K t is MartinLöf random for any t as above.As a step in the direction of a characterization of K-triviality in terms of jump-traceability, we demonstrate that a set A is K-trivial if and only if A is O(g(n) − K(n))-jump traceable for all Solovay functions g, where the equivalence remains true when we restrict attention to functions g of the form K t , either for a single or all functions t as above.Finally, we investigate the plain Kolmogorov complexity C and its time-bounded variant C t of initial segments of computably enumerable sets. Our main theorem here is a dichotomy similar to Kummer's gap theorem and asserts that every high c.e. Turing degree contains a c.e. set B such that for any computable function t there is a constant ct > 0 such that for all m it holds that C t (B m) ≥ ct · m, whereas for any nonhigh c.e. set A there is a computable time bound t and a constant c such that for infinitely many m it holds that C t (A m) ≤ log m + c. By similar methods it can be shown that any high degree contains a set B such that C t (B m) ≥ + m/4. The constructed sets B have low unbounded but high time-bounded Kolmogorov complexity, and accordingly we obtain an alternative proof of the result due to Juedes, Lathrop, and Lutz [JLL] that every high degree contains a strongly deep set.
Abstract. In the theory of algorithmic randomness, several notions of random sequence are defined via a game-theoretic approach, and the notions that received most attention are perhaps Martin-Löf randomness and computable randomness. The latter notion was introduced by Schnorr and is rather natural: an infinite binary sequence is computably random if no total computable strategy succeeds on it by betting on bits in order. However, computably random sequences can have properties that one may consider to be incompatible with being random, in particular, there are computably random sequences that are highly compressible. The concept of Martin-Löf randomness is much better behaved in this and other respects, on the other hand its definition in terms of martingales is considerably less natural. Muchnik, elaborating on ideas of Kolmogorov and Loveland, refined Schnorr's model by also allowing non-monotonic strategies, i.e. strategies that do not bet on bits in order. The subsequent "non-monotonic" notion of randomness, now called Kolmogorov-Loveland-randomness, has been shown to be quite close to Martin-Löf randomness, but whether these two classes coincide remains a fundamental open question. In order to get a better understanding of non-monotonic randomness notions, Miller and Nies introduced some interesting intermediate concepts, where one only allows non-adaptive strategies, i.e., strategies that can still bet non-monotonically, but such that the sequence of betting positions is known in advance (and computable). Recently, these notions were shown by Kastermans and Lempp to differ from Martin-Löf randomness. We continue the study of the non-monotonic randomness notions introduced by Miller and Nies and obtain results about the Kolmogorov complexities of initial segments that may and may not occur for such sequences, where these results then imply a complete classification of these randomness notions by order of strength.
Abstract.A Solovay function is a computable upper bound g for prefixfree Kolmogorov complexity K that is nontrivial in the sense that g agrees with K, up to some additive constant, on infinitely many places n. , we obtain as a corollary that the Martin-Löf randomness of the various variants of Chaitin's Ω extends to the time-bounded case in so far as Ω K t is MartinLöf random for any t as above.As a step in the direction of a characterization of K-triviality in terms of jump-traceability, we demonstrate that a set A is K-trivial if and only if A is O(g(n) − K(n))-jump traceable for all Solovay functions g, where the equivalence remains true when we restrict attention to functions g of the form K t , either for a single or all functions t as above. Finally, we investigate the plain Kolmogorov complexity C and its time-bounded variant C t of initial segments of computably enumerable sets. Our main theorem here is a dichotomy similar to Kummer's gap theorem and asserts that every high c.e. Turing degree contains a c.e. set B such that for any computable function t there is a constant ct > 0 such that for all m it holds that C t (B m) ≥ ct · m, whereas for any nonhigh c.e. set A there is a computable time bound t and a constant c such that for infinitely many m it holds that C t (A m) ≤ log m + c. By similar methods it can be shown that any high degree contains a set B such that C t (B m) ≥ + m/4. The constructed sets B have low unbounded but high time-bounded Kolmogorov complexity, and accordingly we obtain an alternative proof of the result due to Juedes, Lathrop, and Lutz [JLL] that every high degree contains a strongly deep set.
We show that, for any abstract complexity measure in the sense of Blum and for any computable function f (or computable operator F), the class of problems that are f-speedable (or F-speedable) does not have effective measure 0. On the other hand, for sufficiently fast growing f (or F), the class of non-speedable computable problems does not have effective measure 0. These results answer some questions raised by Calude and Zimand. We also give a quantitative analysis of Borodin and Trakhtenbrot's Gap Theorem, which corrects a claim by Calude and Zimand.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.