Collisions between centimeter-to decimeter-sized dusty bodies are important to understand the mechanisms leading to the formation of planetesimals. We thus performed laboratory experiments to study the collisional behavior of dust aggregates in this size range at velocities below and around the fragmentation threshold. We developed two independent experimental setups with the same goal to study the effects of bouncing, fragmentation, and mass transfer in free particle-particle collisions. The first setup is an evacuated drop tower with a free-fall height of 1.5 m, providing us with 0.56 s of microgravity time so that we observed collisions with velocities between 8 mm s −1 and 2 m s −1 . The second setup is designed to study the effect of partial fragmentation (when only one of the two aggregates is destroyed) and mass transfer in more detail. It allows for the measurement of the accretion efficiency as the samples are safely recovered after the encounter. Our results are that for very low velocities we found bouncing as could be expected while the fragmentation velocity of 20 cm s −1 was significantly lower than expected. We present the critical energy for disruptive collisions Q , which showed up to be at least two orders of magnitude lower than previous experiments in the literature. In the wide range between bouncing and disruptive collisions, only one of the samples fragmented in the encounter while the other gained mass. The accretion efficiency in the order of a few percent of the particle's mass is depending on the impact velocity and the sample porosity. Our results will have consequences for dust evolution models in protoplanetary disks as well as for the strength of large, porous planetesimal bodies.
The first macroscopic bodies in protoplanetary disks are dust aggregates. We report on a number of experimental studies with dust aggregates formed from micron-size quartz grains. We confirm in laboratory collision experiments an earlier finding that producing macroscopic bodies by the random impact of sub-mm aggregates results in a well-defined upper-filling factor of 0.31 ± 0.01. Compared to earlier experiments, we increase the projectile mass by about a factor of 100. The collision experiments also show that a highly porous dust-aggregate can retain its highly porous core if collisions get more energetic and a denser shell forms on top of the porous core. We measure the mechanical properties of cm-sized dust samples of different filling factors between 0.34 and 0.50. The tensile strength measured by a Brazilian test, varies between 1 kPa and 6 kPa. The sound speed is determined by a runtime measurement to range between 80 m/s and 140 m/s while Young's modulus is derived from the sound speed and varies between 7 MPa and 25 MPa. The samples were also subjected to quasi-static omni-and uni-directional compression todetermine their compression strengths and flow functions. Applied to planet formation, our experiments provide basic data for future simulations, explain the specific collisional outcomes observed in earlier experiments, and in general support a scenario where collisional growth of planetesimals is possible.
Dust collisions in protoplanetary disks are one means to grow planetesimals, but the destructive or constructive nature of high speed collisions is still unsettled. In laboratory experiments, we study the self-consistent evolution of a target upon continuous impacts of submm dust aggregates at collision velocities of up to 71 m/s. Earlier studies analyzed individual collisions, which were more speculative for high velocities and low projectile masses. Here, we confirm earlier findings that high speed collisions result in mass gain of the target. We also quantify the accretion efficiency for the used SiO 2 (quartz) dust sample. For two different average masses of dust aggregates (0.29 µg and 2.67 µg) accretion efficiencies are decreasing with velocity from 58% to 18% and from 25% to 7% at 27 m/s to 71 m/s, respectively. The accretion efficiency decreases approximately as logarithmic with impact energy. At the impact velocity of 49 m/s the target acquires a volume filling factor of 38%. These data extend earlier work that pointed to the filling factor leveling off at 8 m/s to a value of 33%. Our results imply that high speed collisions are an important mode of particle evolution. It especially allows existing large bodies to grow further by scavenging smaller aggregates with high efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.