Kinetic Theory of Granular Gases provides an introduction to the rapidly developing theory of dissipative gas dynamics — a theory which has mainly evolved over the last decade. The book is aimed at readers from the advanced undergraduate level upwards and leads on to the present state of research. Throughout, special emphasis is put on a microscopically consistent description of pairwise particle collisions which leads to an impact-velocity-dependent coefficient of restitution. The description of the many-particle system, based on the Boltzmann equation, starts with the derivation of the velocity distribution function, followed by the investigation of self-diffusion and Brownian motion. Using hydrodynamical methods, transport processes and self-organized structure formation are studied. An appendix gives a brief introduction to event-driven molecular dynamics. A second appendix describes a novel mathematical technique for derivation of kinetic properties, which allows for the application of computer algebra. The text is self-contained, requiring no mathematical or physical knowledge beyond that of standard physics undergraduate level. The material is adequate for a one-semester course and contains chapter summaries as well as exercises with detailed solutions. The molecular dynamics and computer-algebra programs can be downloaded from a companion web page.
We propose a model for collisions between particles of a granular material and calculate the restitution coefficients for the normal and tangential motion as functions of the impact velocity from considerations of dissipative viscoelastic collisions. Existing models of impact with dissipation as well as the classical Hertz impact theory are included in the present model as special cases. We find that the type of collision (smooth, reflecting or sticky) is determined by the impact velocity and by the surface properties of the colliding grains. We observe a rather nontrivial dependence of the tangential restitution coefficient on the impact velocity.
The kinetic energy distribution function satisfying the Boltzmann equation is studied analytically and numerically for a system of inelastic hard spheres in the case of binary collisions. Analytically, this function is shown to have a similarity form in the simple cases of uniform or steady-state flows. This determines the region of validity of hydrodynamic description. The latter is used to construct the phase diagram of granular systems, and discriminate between clustering instability and inelastic collapse. The molecular dynamics results support analytical results, but also exhibit a novel fluctuational breakdown of mean-field descriptions.Granular media such as sand provide an attractive opportunity to revisit a number of topics in classical physics, and contribute new angles. In this paper we describe the granular phase diagram which we hope will be helpful to a broad community given the raising interest in granular systems [1]. The researchers interested in diluted granular gases, such as in astrophysical applications [2], and researchers who study, say, compaction of sand [3] use different approaches. The phase diagram may represent a ground for communication.The phase of granular system depends on inelasticity of collisions, r, (restitution coefficient approximation, [4, 5, 6]), particle density, ρ, particle size, a, system size, * J. Stat. Phys. (in press)
We perform a dimension analysis for colliding viscoelastic spheres to show that the coefficient of normal restitution epsilon depends on the impact velocity g as epsilon=1-gamma(1)g(1/5)+gamma(2)g(2/5)-/+..., in accordance with recent findings. We develop a simple theory to find explicit expressions for coefficients gamma(1) and gamma(2). Using these and few next expansion coefficients for epsilon(g) we construct a Padé approximation for this function which may be used for a wide range of impact velocities where the concept of the viscoelastic collision is valid. The obtained expression reproduces quite accurately the existing experimental dependence epsilon(g) for ice particles.
We investigate the cooling rate of a gas of inelastically interacting particles. When we assume velocitydependent coefficients of restitution the material cools down slower than with constant restitution. This behavior might have a large influence to clustering and structure formation processes. ͓S1063-651X͑97͒00112-8͔
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.