Constitutional mismatch repair (MMR) deficiency (CMMRD) is a rare childhood cancer susceptibility syndrome resulting from biallelic germline loss-of-function mutations in one of the MMR genes. Individuals with CMMRD have high risk to develop a broad spectrum of malignancies and frequently display features reminiscent of neurofibromatosis type 1 (NF1). Evaluation of the clinical findings of genetically proven CMMRD patients shows that not only multiple café-au-lait macules but also any of the diagnostic features of NF1 may be present in a CMMRD patient. This phenotypic overlap may lead to misdiagnosis of CMMRD patients as having NF1, which impedes adequate management of the patients and their families. The spectrum of CMMRD-associated childhood malignancies includes high-grade glioma, acute myeloid leukaemia or rhabdomyosarcoma, also reported as associated with NF1. Reported associations between NF1 and these malignancies are to a large extent based on studies that neither proved the presence of an NF1 germline mutation nor ruled-out CMMRD in the affected. Hence, these associations are challenged by our current knowledge of the phenotypic overlap between NF1 and CMMRD and should be re-evaluated in future studies. Recent advances in the diagnostics of CMMRD should render it possible to definitely state or refute this diagnosis in these individuals.
Neurofibromatosis type 1 (NF1) is mainly characterized by the occurrence of benign peripheral nerve sheath tumors or neurofibromas. Thorough investigation of the somatic mutation spectrum has thus far been hampered by the large size of the NF1 gene and the considerable proportion of NF1 heterozygous cells within the tumors. We developed an improved somatic mutation detection strategy on cultured Schwann cells derived from neurofibromas and investigated 38 tumors from nine NF1 patients. Twenty-nine somatic NF1 lesions were detected which represents the highest NF1 somatic mutation detection rate described so far (76%). Furthermore, our data strongly suggest that the acquired second hit underlies reduced NF1 expression in Schwann cell cultures. Together, these data clearly illustrate that two inactivating NF1 mutations, in a subpopulation of the Schwann cells, are required for neurofibroma formation in NF1 tumorigenesis. The observed somatic mutation spectrum shows that intragenic NF1 mutations (26/29) are most prevalent, particularly frameshift mutations (12/29, 41%). We hypothesize that this mutation signature might reflect slightly reduced DNA repair efficiency as a trigger for NF1 somatic inactivation preceding tumorigenesis. Joint analysis of the current and previously published NF1 mutation data revealed a significant difference in the somatic mutation spectrum in patients with a NF1 microdeletion vs. non-microdeletion patients with respect to the prevalence of loss of heterozygosity events (0/15 vs. 41/81). Differences in somatic inactivation mechanism might therefore exist between NF1 microdeletion patients and the general NF1 population.
BackgroundGenomic disorders are caused by copy number changes that may exhibit recurrent breakpoints processed by nonallelic homologous recombination. However, region-specific disease-associated copy number changes have also been observed which exhibit non-recurrent breakpoints. The mechanisms underlying these non-recurrent copy number changes have not yet been fully elucidated.ResultsWe analyze large NF1 deletions with non-recurrent breakpoints as a model to investigate the full spectrum of causative mechanisms, and observe that they are mediated by various DNA double strand break repair mechanisms, as well as aberrant replication. Further, two of the 17 NF1 deletions with non-recurrent breakpoints, identified in unrelated patients, occur in association with the concomitant insertion of SINE/variable number of tandem repeats/Alu (SVA) retrotransposons at the deletion breakpoints. The respective breakpoints are refractory to analysis by standard breakpoint-spanning PCRs and are only identified by means of optimized PCR protocols designed to amplify across GC-rich sequences. The SVA elements are integrated within SUZ12P intron 8 in both patients, and were mediated by target-primed reverse transcription of SVA mRNA intermediates derived from retrotranspositionally active source elements. Both SVA insertions occurred during early postzygotic development and are uniquely associated with large deletions of 1 Mb and 867 kb, respectively, at the insertion sites.ConclusionsSince active SVA elements are abundant in the human genome and the retrotranspositional activity of many SVA source elements is high, SVA insertion-associated large genomic deletions encompassing many hundreds of kilobases could constitute a novel and as yet under-appreciated mechanism underlying large-scale copy number changes in the human genome.
Pure populations of neurofibroma-derived Schwann cells bearing both NF1 mutated alleles (NF1-/-) have been isolated from different neurofibromas showing loss of heterozygosity of nearly the entire 17q chromosome. By comparing molecular and fluorescent in situ hybridization analysis of these cells, we demonstrate mitotic recombination is the mechanism underlying this type of loss of heterozygosity leading to reduction to homozygosity of NF1 germline mutation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.