The CD95 (also called APO-1/Fas) system plays a major role in the induction of apoptosis in lymphoid and nonlymphoid tissues. The CD95 ligand (CD95L) is induced in response to a variety of signals, including IFN-γ and TCR/CD3 stimulation. Here we report the identification of two positive regulatory IFN-regulatory factor-dependent domains (PRIDDs) in the CD95L promoter and its 5′ untranslated region, respectively. EMSAs demonstrate specific binding of IFN-γ-induced IFN-regulatory factor 1 (IRF-1) to the PRIDD sequences. Ectopic IRF-1 expression induces CD95L promoter activity. Furthermore, we demonstrate that PRIDDs play an important role in TCR/CD3-mediated CD95L induction. Most interestingly, viral IRFs of human herpes virus 8 (HHV8) totally abolish IRF-1-mediated and strongly reduce TCR/CD3-mediated CD95L induction. We demonstrate here for the first time that viral IRFs inhibit activation-induced cell death. Thus, these results demonstrate an important mechanism of HHV8 to modulate the immune response by down-regulation of CD95L expression. Inhibition of CD95-dependent T cell function might contribute to the immune escape of HHV8.
The novel early response gene p22/PRG1 is linked to cell cycle entry and the induction of proliferation in various cell types although its exact function is still unknown. The p22/PRG1 promoter region contains a 20 bp sequence matching the consensus binding motif for the tumor suppressor protein p53. Gel shift assays demonstrated that p53 speci®cally binds to an oligonucleotide derived from the p53 binding site of the p22/PRG1 promoter. Chloramphenicol acetyltransferase (CAT) reporter gene assays con®rmed that this site confers p53-dependent transcriptional activity to the p22/PRG1 promoter. In Hela cells, p22/PRG1 promoter constructs induced CAT expression only when cotransfected with an expression plasmid for wild-type, but not for mutant p53. Similarly, CAT expression was inducible at the permissive (318C) but not at the non-permissive temperature (398C) in the rat embryo ®broblast-derived cell line clone-6 that expresses a temperature-sensitive mutant p53. Conversion of this mutant p53 to a functional p53 at the permissive temperature was accompanied by a signi®cant increase of endogenous p22/PRG1 mRNA level in this cell line. g-irradiation of rat splenocytes or doxorubicin-treatment of Hela cells increased p53 levels followed by transcriptional activation of p22/PRG1 and p21/Waf1 in parallel. Our data demonstrate that p22/PRG1 transcription is induced by p53 during p53-dependent cell cycle arrest and apoptosis. Therefore, p22/PRG1 represents a novel target for transcriptional activation by p53.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.