In most industrialised countries, one of the major societal challenges is the demographic change coming along with the ageing of the population. The increasing life expectancy observed over the last decades underlines the importance to find ways to appropriately cover the financial needs of the elderly. A particular issue arises in the area of health, where sufficient care must be provided to a growing number of dependent elderly in need of long-term care (LTC) services. In many markets, the offering of life insurance products incorporating care options and LTC insurance products is generally scarce. In our research, we therefore examine a life annuity product with an embedded care option potentially providing additional financial support to dependent persons. To evaluate the care option, we determine the minimum price that the annuity provider requires and the policyholder’s willingness to pay for the care option. For the latter, we employ individual utility functions taking account of the policyholder’s condition. We base our numerical study on recently developed transition probability data from Switzerland. Our findings give new and realistic insights into the nature and the utility of life annuity products proposing an embedded care option for tackling the financing of LTC needs.
The purpose of this paper is to conduct a market-consistent valuation of life insurance participating liabilities sold to a population of partially heterogeneous customers under the joint impact of biometric and financial risk. In particular, the heterogeneity between groups of policyholders stems from their offered minimum interest rate guarantees and contract maturities. We analyse the effects of these features on the company’s insolvency while embracing the insurer’s goal to achieve the same expected return for different cohorts of policyholders. Within our extensive numerical analyses, we determine the fair participation rates and other key figures, and discuss the implications for the stakeholders, taking account of various degrees of conservativeness of the insurer when pricing the contracts.
Tontines, retirement products constructed in such a way that the longevity risk is shared in a pool of policyholders, have recently gained vast attention from researchers and practitioners. Typically, these products are cheaper than annuities, but do not provide stable payments to policyholders. This raises the question whether, from the policyholders' viewpoint, the advantages of annuities and tontines can be combined to form a retirement plan which is cheaper than an annuity, but provides a less volatile retirement income than a tontine. In this article, we analyze and compare three approaches of combining annuities and tontines in an expected utility framework: the previously introduced “tonuity”, a product very similar to the tonuity which we call “antine” and a portfolio consisting of an annuity and a tontine. We show that the payoffs of a tonuity and an antine can be replicated by a portfolio consisting of an annuity and a tontine. Consequently, policyholders achieve higher expected utility levels when choosing the portfolio over the novel retirement products tonuity and antine. Further, we derive conditions on the premium loadings of annuities and tontines indicating when the optimal portfolio is investing a positive amount in both annuity and tontine, and when the optimal portfolio turns out to be a pure annuity or a pure tontine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.