Human lysosomal arylsulfatase A (ASA) is a prototype member of the sulfatase family. These enzymes require the posttranslational oxidation of the -CH2SH group of a conserved cysteine to an aldehyde, yielding a formylglycine. Without this modification sulfatases are catalytically inactive, as revealed by a lysosomal storage disorder known as multiple sulfatase deficiency. The 2.1 A resolution X-ray crystal structure shows an ASA homooctamer composed of a tetramer of dimers, (alpha 2)4. The alpha/beta fold of the monomer has significant structural analogy to another hydrolytic enzyme, the alkaline phosphatase, and superposition of these two structures shows that the active centers are located in largely identical positions. The functionally essential formylglycine is located in a positively charged pocket and acts as ligand to an octahedrally coordinated metal ion interpreted as Mg2+. The electron density at the formylglycine suggests the presence of a 2-fold disordered aldehyde group with the possible contribution of an aldehyde hydrate, -CH(OH)2, with gem-hydroxyl groups. In the proposed catalytic mechanism, the aldehyde accepts a water molecule to form a hydrate. One of the two hydroxyl groups hydrolyzes the substrate sulfate ester via a transesterification step, resulting in a covalent intermediate. The second hydroxyl serves to eliminate sulfate under inversion of configuration through C-O cleavage and reformation of the aldehyde. This study provides the structural basis for understanding a novel mechanism of ester hydrolysis and explains the functional importance of the unusually modified amino acid.
Multiple sulfatase deficiency (MSD) is a lysosomal storage disorder characterized by a decreased activity of all known sulfatases. The deficiency of sulfatases was proposed to result from the lack of a co- or posttranslational modification that is common to all sulfatases and required for their catalytic activity. Structural analysis of two catalytically active sulfatases revealed that a cysteine residue that is predicted from the cDNA sequence and conserved among all known sulfatases is replaced by a 2-amino-3-oxopropionic acid residue, while in sulfatases derived from MSD cells, this cysteine residue is retained. It is proposed that the co- or posttranslational conversion of a cysteine to 2-amino-3-oxopropionic acid is required for generating catalytically active sulfatases and that deficiency of this protein modification is the cause of MSD.
The electron transferring flavoprotein/butyryl-CoA dehydrogenase (EtfAB/Bcd) catalyzes the reduction of one crotonyl-CoA and two ferredoxins by two NADH within a flavin-based electron-bifurcating process. Here we report on the X-ray structure of the Clostridium difficile (EtfAB/Bcd)4 complex in the dehydrogenase-conducting D-state, α-FAD (bound to domain II of EtfA) and δ-FAD (bound to Bcd) being 8 Å apart. Superimposing Acidaminococcus fermentans EtfAB onto C. difficile EtfAB/Bcd reveals a rotation of domain II of nearly 80°. Further rotation by 10° brings EtfAB into the bifurcating B-state, α-FAD and β-FAD (bound to EtfB) being 14 Å apart. This dual binding mode of domain II, substantiated by mutational studies, resembles findings in non-bifurcating EtfAB/acyl-CoA dehydrogenase complexes. In our proposed mechanism, NADH reduces β-FAD, which bifurcates. One electron goes to ferredoxin and one to α-FAD, which swings over to reduce δ-FAD to the semiquinone. Repetition affords a second reduced ferredoxin and δ-FADH−, which reduces crotonyl-CoA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.