We combined two tuberculosis (TB) genome-wide association studies (GWAS) from Ghana and The Gambia with subsequent replication totalling 11,425 participants. A significant association with disease was observed at SNP rs4331426 located in a gene-poor region on chromosome 18q11.2 (P=6.8×10−9, OR=1.19, 95%CI=1.13-1.27). Our finding shows that GWAS can identify novel loci for infectious causes of mortality even in Africa where levels of linkage disequilibrium are particularly low.
Malaria causes approximately one million fatalities per year, mostly among African children. Although highlighted by the strong protective effect of the sickle-cell trait, the full impact of human genetics on resistance to the disease remains largely unexplored. Genome-wide association (GWA) studies are designed to unravel relevant genetic variants comprehensively; however, in malaria, as in other infectious diseases, these studies have been only partly successful. Here we identify two previously unknown loci associated with severe falciparum malaria in patients and controls from Ghana, West Africa. We applied the GWA approach to the diverse clinical syndromes of severe falciparum malaria, thereby targeting human genetic variants influencing any step in the complex pathogenesis of the disease. One of the loci was identified on chromosome 1q32 within the ATP2B4 gene, which encodes the main calcium pump of erythrocytes, the host cells of the pathogenic stage of malaria parasites. The second was indicated by an intergenic single nucleotide polymorphism on chromosome 16q22.2, possibly linked to a neighbouring gene encoding the tight-junction protein MARVELD3. The protein is expressed on endothelial cells and might therefore have a role in microvascular damage caused by endothelial adherence of parasitized erythrocytes. We also confirmed previous reports on protective effects of the sickle-cell trait and blood group O. Our findings underline the potential of the GWA approach to provide candidates for the development of control measures against infectious diseases in humans.
The human immunity-related GTPase M (IRGM) has been shown to be critically involved in regulating autophagy as a means of disposing cytosolic cellular structures and of reducing the growth of intracellular pathogens in vitro. This includes Mycobacterium tuberculosis, which is in agreement with findings indicating that M. tuberculosis translocates from the phagolysosome into the cytosol of infected cells, where it becomes exposed to autophagy. To test whether IRGM plays a role in human infection, we studied IRGM gene variants in 2010 patients with pulmonary tuberculosis (TB) and 2346 unaffected controls. Mycobacterial clades were classified by spoligotyping, IS6110 fingerprinting and genotyping of the pks1/15 deletion. The IRGM genotype −261TT was negatively associated with TB caused by M. tuberculosis (OR 0.66, CI 0.52–0.84, Pnominal 0.0009, Pcorrected 0.0045) and not with TB caused by M. africanum or M. bovis (OR 0.95, CI 0.70–1.30. P 0.8). Further stratification for mycobacterial clades revealed that the protective effect applied only to M. tuberculosis strains with a damaged pks1/15 gene which is characteristic for the Euro-American (EUAM) subgroup of M. tuberculosis (OR 0.63, CI 0.49–0.81, Pnominal 0.0004, Pcorrected 0.0019). Our results, including those of luciferase reporter gene assays with the IRGM variants −261C and −261T, suggest a role for IRGM and autophagy in protection of humans against natural infection with M. tuberculosis EUAM clades. Moreover, they support in vitro findings indicating that TB lineages capable of producing a distinct mycobacterial phenolic glycolipid that occurs exclusively in strains with an intact pks1/15 gene inhibit innate immune responses in which IRGM contributes to the control of autophagy. Finally, they raise the possibility that the increased frequency of the IRGM −261TT genotype may have contributed to the establishment of M. africanum as a pathogen in the West African population.
After imputation of data of the 1000 Genomes Project into a genome-wide data set of Ghanaian tuberculosis cases and controls, we identified a resistance locus on chromosome 11p13, downstream of the Wilms' tumour 1 gene. The strongest signal was obtained at SNP rs2057178 (P = 2.63 × 10−9). Replication in Gambian, Indonesian and Russian TB case-control study groups increased the significance level to P = 2.57 × 10−11.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.