Thin-film solar cells have the potential to significantly decrease the cost of photovoltaics. Light trapping is particularly critical in such thin-film crystalline silicon solar cells in order to increase light absorption and hence cell efficiency. In this article we investigate the suitability of localized surface plasmons on silver nanoparticles for enhancing the absorbance of silicon solar cells. We find that surface plasmons can increase the spectral response of thin-film cells over almost the entire solar spectrum. At wavelengths close to the band gap of Si we observe a significant enhancement of the absorption for both thin-film and wafer-based structures. We report a sevenfold enhancement for wafer-based cells at = 1200 nm and up to 16-fold enhancement at = 1050 nm for 1.25 m thin silicon-on-insulator ͑SOI͒ cells, and compare the results with a theoretical dipole-waveguide model. We also report a close to 12-fold enhancement in the electroluminescence from ultrathin SOI light-emitting diodes and investigate the effect of varying the particle size on that enhancement.
One of the major loss mechanisms leading to low energy conversion efficiencies of solar cells is the thermalization of charge carriers generated by the absorption of high-energy photons. These losses can largely be reduced in a solar cell if more than one electron–hole pair can be generated per incident photon. A method to realize multiple electron–hole pair generation per incident photon is proposed in this article. Incident photons with energies larger than twice the band gap of the solar cell are absorbed by a luminescence converter, which transforms them into two or more lower energy photons. The theoretical efficiency limit of this system for nonconcentrated sunlight is determined as a function of the solar cell’s band gap using detailed balance calculations. It is shown that a maximum conversion efficiency of 39.63% can be achieved for a 6000 K blackbody spectrum and for a luminescence converter with one intermediate level. This is a substantial improvement over the limiting efficiency of 30.9%, which a solar cell exposed directly to nonconcentrated radiation may have under the same assumption of radiative recombination only.
A system for solar energy conversion using the up-conversion of sub-band-gap photons to increase the maximum efficiency of a single-junction conventional, bifacial solar cell is discussed. An up-converter is located behind a solar cell and absorbs transmitted sub-band-gap photons via sequential ground state absorption/excited state absorption processes in a three-level system. This generates an excited state in the up-converter from which photons are emitted which are subsequently absorbed in the solar cell and generate electron-hole pairs. The solar energy conversion efficiency of this system in the radiative limit is calculated for different cell geometries and different illumination conditions using a detailed balance model. It is shown that in contrast to an impurity photovoltaic solar cell the conditions of photon selectivity and of complete absorption of high-energy photons can be met simultaneously in this system by restricting the widths of the bands in the up-converter. The upper limit of the energy conversion efficiency of the system is found to be 63.2% for concentrated sunlight and 47.6% for nonconcentrated sunlight.
Erbium-doped sodium yttrium fluoride ͑NaYF 4 :Er 3+ ͒ up-conversion phosphors were attached to the rear of a bifacial silicon solar cell to enhance its reponsivity in the near-infrared. The incident wavelength and light intensity were varied and the resulting short circuit current of the solar cell was measured. A close match between the spectral features of the external quantum efficiency and the phosphor absorption is consistent with the energy transfer up-conversion process. The peak external quantum efficiency of the silicon solar cell was measured to be ͑2.5± 0.2͒% under 5.1 mW laser excitation at 1523 nm, corresponding to an internal quantum efficiency of 3.8%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.