We present $$L^{\#}$$ L # , a new and simple approach to active automata learning. Instead of focusing on equivalence of observations, like the $$L^{*}$$ L ∗ algorithm and its descendants, $$L^{\#}$$ L # takes a different perspective: it tries to establish apartness, a constructive form of inequality. $$L^{\#}$$ L # does not require auxiliary notions such as observation tables or discrimination trees, but operates directly on tree-shaped automata. $$L^{\#}$$ L # has the same asymptotic query and symbol complexities as the best existing learning algorithms, but we show that adaptive distinguishing sequences can be naturally integrated to boost the performance of $$L^{\#}$$ L # in practice. Experiments with a prototype implementation, written in Rust, suggest that $$L^{\#}$$ L # is competitive with existing algorithms.
Partition refinement is a method for minimizing automata and transition systems of various types. Recently, we have developed a partition refinement algorithm that is generic in the transition type of the given system and matches the run time of the best known algorithms for many concrete types of systems, e.g. deterministic automata as well as ordinary, weighted, and probabilistic (labelled) transition systems. Genericity is achieved by modelling transition types as functors on sets, and systems as coalgebras. In the present work, we refine the run time analysis of our algorithm to cover additional instances, notably weighted automata and, more generally, weighted tree automata. For weights in a cancellative monoid we match, and for non-cancellative monoids such as (the additive monoid of) the tropical semiring even substantially improve, the asymptotic run time of the best known algorithms. We have implemented our algorithm in a generic tool that is easily instantiated to concrete system types by implementing a simple refinement interface. Moreover, the algorithm and the tool are modular, and partition refiners for new types of systems are obtained easily by composing pre-implemented basic functors. Experiments show that even for complex system types, the tool is able to handle systems with millions of transitions.
For the minimization of state-based systems (i.e. the reduction of the number of states while retaining the system's semantics), there are two obvious aspects: removing unnecessary states of the system and merging redundant states in the system. In the present article, we relate the two minimization aspects on coalgebras by defining an abstract notion of minimality. The abstract notions minimality and minimization live in a general category with a factorization system. We will find criteria on the category that ensure uniqueness, existence, and functoriality of the minimization aspects. The proofs of these results instantiate to those for reachability and observability minimization in the standard coalgebra literature. Finally, we will see how the two aspects of minimization interact and under which criteria they can be sequenced in any order, like in automata minimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.