A fourth industrial revolution is occurring in global manufacturing. It is based on the introduction ofInternet of thingsandservitizationconcepts into manufacturing companies, leading to vertically and horizontally integrated production systems. The resultingsmart factoriesare able to fulfill dynamic customer demands with high variability in small lot sizes while integrating human ingenuity and automation. To support the manufacturing industry in this conversion process and enhance global competitiveness, policy makers in several countries have established research and technology transfer schemes. Most prominently, Germany has enacted itsIndustrie 4.0program, which is increasingly affecting European policy, while the United States focuses onsmart manufacturing. Other industrial nations have established their own programs on smart manufacturing, notably Japan and Korea. This shows that manufacturing intelligence has become a crucial topic for researchers and industries worldwide. The main object of these activities are the so-called cyber-physical systems (CPS): physical entities (e.g., machines, vehicles, and work pieces), which are equipped with technologies such as RFIDs, sensors, microprocessors, telematics or complete embedded systems. They are characterized by being able to collect data of themselves and their environment, process and evaluate these data, connect and communicate with other systems, and initiate actions. In addition, CPS enabled new services that can replace traditional business models based solely on product sales. The objective of this paper is to provide an overview of the Industrie 4.0 and smart manufacturing programs, analyze the application potential of CPS starting from product design through production and logistics up to maintenance and exploitation (e.g., recycling), and identify current and future research issues. Besides the technological perspective, the paper also takes into account the economic side considering the new business strategies and models available.
The nature of manufacturing systems faces ever more complex, dynamic and at times even chaotic behaviors. In order to being able to satisfy the demand for high-quality products in an efficient manner, it is essential to utilize all means available. One area, which saw fast pace developments in terms of not only promising results but also usability, is machine learning. Promising an answer to many of the old and new challenges of manufacturing, machine learning is widely discussed by researchers and practitioners alike. However, the field is very broad and even confusing which presents a challenge and a barrier hindering wide application. Here, this paper contributes in presenting an overview of available machine learning techniques and structuring this rather complicated area. A special focus is laid on the potential benefit, and examples of successful applications in a manufacturing environment.
The purpose of this article is to collect and structure the various characteristics, technologies and enabling factors available in the current body of knowledge that are associated with smart manufacturing. Eventually, it is expected that this selection of characteristics, technologies and enabling factors will help compare and distinguish other initiatives such as Industry 4.0, cyber-physical production systems, smart factory, intelligent manufacturing and advanced manufacturing, which are frequently used synonymously with smart manufacturing. The result of this article is a comprehensive list of such characteristics, technologies and enabling factors that are regularly associated with smart manufacturing. This article also considers principles of ''semantic similarity'' to establish the basis for a future smart manufacturing ontology, since it was found that many of the listed items show varying overlaps; therefore, certain characteristics and technologies are merged and/or clustered. This results in a set of five defining characteristics, 11 technologies and three enabling factors that are considered relevant for the smart manufacturing scope. This article then evaluates the derived structure by matching the characteristics and technology clusters of smart manufacturing with the design principles of Industry 4.0 and cyber-physical systems. The authors aim to provide a solid basis to start a broad and interdisciplinary discussion within the research and industrial community about the defining characteristics, technologies and enabling factors of smart manufacturing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.