In addition to coding region polymorphism, allele-specific variation in the upstream regulatory region of the HLA-DQB1 gene has been detected. Reporter gene assays and transfection studies have indicated that HLA-DQB1 promoter polymorphism may be of functional significance. The aim of this study was to utilize real-time reverse transcriptase-polymerase chain reaction (RT-PCR) for allele-specific quantification of HLA-DQB1 expression and to analyze cell-specific HLA-DQB1 expression in vivo. For the allele-specific quantification of DQB1 gene products, a real-time RT-PCR set of primer pairs (n ¼ 27) and probes (n ¼ 5) targeting exon 2 variability was established. The robustness and integrity of the assay system were confirmed by using recombinant DQB1 exon 2 plasmid clones as active exogenous controls. Sensitivity and reproducibility were assessed by serial dilution and allelic mixing analyses. In application to the study of allele-specific expression of DQB1 gene products during cytokine-driven maturation of monocyte-derived dendritic cells, differential patterns of allelic expression in heterozygous individuals were observed for DQB1*0301, compared to DQB1*0501 and DQB1*0602. At maximum, 1.9-fold (*0301/*0501) and 2.5-fold (*0301/*0602) higher induction was seen for DQB*0301. In conclusion, HLA-DQB1 expression can be analyzed by real-time RT-PCR suitable for cell-and allele-specific detection of HLA-DQB1 transcripts in homo-and heterozygous combinations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.