Sunscreens are used to provide protection against adverse effects of ultraviolet (UV)B (290-320 nm) and UVA (320-400 nm) radiation. According to the United States Food and Drug Administration, the protection factor against UVA should be at least one-third of the overall sun protection factor. Titanium dioxide (TiO2) and zinc oxide (ZnO) minerals are frequently employed in sunscreens as inorganic physical sun blockers. As TiO2 is more effective in UVB and ZnO in the UVA range, the combination of these particles assures a broad-band UV protection. However, to solve the cosmetic drawback of these opaque sunscreens, microsized TiO2 and ZnO have been increasingly replaced by TiO2 and ZnO nanoparticles (NPs) (<100 nm). This review focuses on significant effects on the UV attenuation of sunscreens when microsized TiO2 and ZnO particles are replaced by NPs and evaluates physicochemical aspects that affect effectiveness and safety of NP sunscreens. With the use of TiO2 and ZnO NPs, the undesired opaqueness disappears but the required balance between UVA and UVB protection can be altered. Utilization of mixtures of micro- and nanosized ZnO dispersions and nanosized TiO2 particles may improve this situation. Skin exposure to NP-containing sunscreens leads to incorporation of TiO2 and ZnO NPs in the stratum corneum, which can alter specific NP attenuation properties due to particle-particle, particle-skin, and skin-particle-light physicochemical interactions. Both sunscreen NPs induce (photo)cyto- and genotoxicity and have been sporadically observed in viable skin layers especially in case of long-term exposures and ZnO. Photocatalytic effects, the highest for anatase TiO2, cannot be completely prevented by coating of the particles, but silica-based coatings are most effective. Caution should still be exercised when new sunscreens are developed and research that includes sunscreen NP stabilization, chronic exposures, and reduction of NPs' free-radical production should receive full attention.
Owing to the accessibility of skin to light, many applications of photodynamic treatment (PDT) have been developed within dermatology. The recent increase of dermatological antimicrobial PDT investigations is related to the growing problem of bacterial and fungal resistance to antibiotics. This review focuses on the susceptibility of dermatophytic fungi, in particular Trichophyton rubrum, to PDT and shows its potential usefulness in treatment of clinical dermatophytoses. There are no data indicating significant differences in PDT susceptibility between various dermatophytes and it is unlikely that treatment problems of especially T. rubrum with current antimycotics would occur in case of PDT. Red light 5-aminolevulinic acid-mediated PDT is after repeated sessions successful in in vivo treatment of onychomycosis (fungal nail infection) caused by various dermatophytes. Regarding skin dermatophytoses, UVA-1 PDT with cationic porphyrins appears to be safe and efficient. Most effective toward T. rubrum ex vivo is 5,10,15-tris(4-methylpyridinium)-20-phenyl-[21H,23H]-porphine trichloride (Sylsens B) when combined with UVA-1 radiation or red light; this creates the possibility of efficiently treating nail infections and remaining spores in hair follicles. If the promising in vitro and ex vivo results could be transferred to clinical practice, then PDT has a good prospect to become a worthy alternative to established antifungal drugs.
The results show that an optimal pH and low concentrations of calcium are crucial for a selective binding of Sylsens B to the fungus, leading to an increased PDT efficacy. This selective binding to T. rubrum cannot be accomplished for DP mme. It can be concluded that the prerequisite for successful treatment is a use of a low molarity solution of pH 5, supplemented with a chelating agent and a keratinase activity-repressing agent. Under these conditions, PDT with Sylsens B inactivates, initially via singlet oxygen, effectively the fungus in different fungal growth stages.
We demonstrated that the PDT susceptibility of T. rubrum depended on the time of PDT application after spore inoculation. A decrease in susceptibility was observed with increasing time of PDT application for both photosensitizers in DMEM. Changing the incubation medium to distilled water resulted in an increased fungicidal effect for Sylsens B and in a decreased effect for DP mme. We conclude that T. rubrum is susceptible to PDT in a situation that mimics the clinical situation. The fungicidal effect of PDT on fungal spores is of particular importance.
Dermatophytes are fungi that can cause infections (known as tinea) of the skin, hair and nails because of their ability to use keratin. Superficial mycoses are probably the most prevalent of infectious diseases worldwide. One of the most distinct limitations of the current therapeutic options is the recurrence of the infection and duration of treatment. The present study shows that Trichophyton rubrum in suspension culture is susceptible to photodynamic treatment (PDT), a completely new application in this area. T. rubrum could be effectively killed with the use of the light-activated porphyrins deuteroporphyrin monomethylester (DP mme) and 5,10,15-tris(4methylpyridinium)-20-phenyl-[21H,23H]-porphine trichloride (Sylsens B). The photodynamic efficacy was compared with that of some other photosensitizers that are well known in the field of PDT: the porphyrins deuteroporphyrin and hematoporphyrin, the drug Photofrin and several phthalocyanines. It was demonstrated that with the use of broadband white light, the phthalocyanines and Photofrin displayed a fungistatic effect for about 1 week, whereas all the porphyrins caused photodynamic killing of the dermatophyte. Sylsens B was the most effective sensitizer and showed no dark toxicity; therefore, in an appropriate formulation, it could be a promising candidate for the treatment of various forms of tinea. For Sylsens B and DP mme, which displayed the best results, a concentrationdependent uptake by T. rubrum was established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.