The spermatophyte root system is composed of a primary root that develops from an embryonically formed root meristem, and of different post-embryonic root types: lateral and adventitious roots. Adventitious roots, arising from the stem of the plants, are the main component of the mature root system of many plants. Their development can also be induced in response to adverse environmental conditions or stresses. Here, in this review, we report on the morphological and functional diversity of adventitious roots and their origin. The hormonal and molecular regulation of the constitutive and inducible adventitious root initiation and development is discussed. Recent data confirmed the crucial role of the auxin/cytokinin balance in adventitious rooting. Nevertheless, other hormones must be considered. At the genetic level, adventitious root formation integrates the transduction of external signals, as well as a core auxin-regulated developmental pathway that is shared with lateral root formation. The knowledge acquired from adventitious root development opens new perspectives to improve micropropagation by cutting in recalcitrant species, root system architecture of crops such as cereals, and to understand how plants adapted during evolution to the terrestrial environment by producing different post-embryonic root types.
Water availability is undoubtedly one of the most important environmental factors affecting crop production. Drought causes a gradual deprivation of water in the soil from top to deep layers and can occur at diverse stages of plant development. Roots are the first organs that perceive water deficit in soil and their adaptive development contributes to drought adaptation. Domestication has contributed to a bottleneck in genetic diversity. Wild species or landraces represent a pool of genetic diversity that has not been exploited yet in breeding program. In this study, we used a collection of 230 two-row spring barley landraces to detect phenotypic variation in root system plasticity in response to drought and to identify new quantitative trait loci (QTL) involved in root system architecture under diverse growth conditions. For this purpose, young seedlings grown for 21 days in pouches under control and osmotic-stress conditions were phenotyped and genotyped using the barley 50k iSelect SNP array, and genome-wide association studies (GWAS) were conducted using three different GWAS methods (MLM GAPIT, FarmCPU, and BLINK) to detect genotype/phenotype associations. In total, 276 significant marker-trait associations (MTAs; p-value (FDR)< 0.05) were identified for root (14 and 12 traits under osmotic-stress and control conditions, respectively) and for three shoot traits under both conditions. In total, 52 QTL (multi-trait or identified by at least two different GWAS approaches) were investigated to identify genes representing promising candidates with a role in root development and adaptation to drought stress.
Food security is one of the main topics of today's agriculture, primarily due to increasingly challenging environmental conditions. As most of humankind has a daily intake of cereal grains, current breeding programs focus on these crop plants. Customized endonucleases have been included in the breeders' toolbox after successfully demonstrating their use. Due to technological restrictions, the main focus of the new technology was on above-ground plant organs. In contrast, the essential below ground components were given only limited attention. In the present review, the knowledge of the root system architecture in cereals and the role of phytohormones during their establishment is summarized, and the underlying molecular mechanisms are outlined. The review summarizes how the use of CRISPR-based genome editing methodology can improve the root system architecture to enhance crop production genetically. Finally, future research directions involving this knowledge and technical advances are suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.