Despite being a critical
molecule in the brain, mass spectrometry
imaging (MSI) of cholesterol has been under-reported compared to
other lipids due to the difficulty in ionizing the sterol molecule.
In the present work, we have employed an on-tissue enzyme-assisted
derivatization strategy to improve detection of cholesterol in brain
tissue sections. We report distribution and levels of cholesterol
across specific structures of the mouse brain, in a model of Niemann-Pick
type C1 disease, and during brain development. MSI revealed that in
the adult mouse, cholesterol is the highest in the pons and medulla
and how its distribution changes during development. Cholesterol was
significantly reduced in the corpus callosum and other brain regions
in the
Npc1
null mouse, confirming hypomyelination
at the molecular level. Our study demonstrates the potential of MSI
to the study of sterols in neuroscience.
Niemann–Pick disease, type C1 (NPC1) is a fatal, autosomal recessive, neurodegenerative disorder caused by mutations in the NPC1 gene. As a result, there is accumulation of unesterified cholesterol and sphingolipids in the late endosomal/lysosomal system. This abnormal accumulation results in a cascade of pathophysiological events including progressive, cerebellar neurodegeneration, among others. While significant progress has been made to better understand NPC1, the downstream effects of cholesterol storage and the major mechanisms that drive neurodegeneration remain unclear. In the current study, a) the use of a commercial, highly efficient standard flow‐ESI platform for protein biomarker identification is implemented and b) protein biomarkers are identified and evaluated at a terminal time point in the NPC1 null mouse model. In this study, alterations are observed in proteins related to fatty acid homeostasis, calcium binding and regulation, lysosomal regulation, and inositol biosynthesis and metabolism, as well as signaling by Rho family GTPases. New observations from this study include altered expression of Pcp2 and Limp2 in Npc1 mutant mice relative to control, with Pcp2 exhibiting multiple isoforms and specific to the cerebella. This study provides valuable insight into pathways altered in the late‐stage pathophysiology of NPC1.
In general, physicians closely adhered to ACS prescribing guidelines in Vietnamese hospital practice. Prescribing of beta blockers and clopidogrel loading doses was probably suboptimal. Why patients do not complete treatment needs to be investigated.
Despite being a critical molecule for neurobiology and brain health, mass spectrometry imaging (MSI) of cholesterol has been under reported compared to other lipids, due to the difficulty in ionising the sterol molecule. In the present work we have employed an on-tissue enzyme-assisted derivatisation strategy to improve detection of cholesterol in brain tissue sections. We report distribution and levels of cholesterol across specific brain structures of the mouse brain, in a model of Niemann-Pick type C1 (NPC1) disease, and during brain development. MSI revealed how cholesterol changes during development and that in the adult is highest in pons and medulla of the brain stem. Cholesterol was significantly reduced in the corpus callosum and other brain regions in the Npc1 null mouse, confirming hypomyelination at the molecular level. Our study demonstrates the potential of MSI to the study of sterols in neuroscience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.