Background: Anecdotal reports suggest a rise in anti-Asian racial attitudes and discrimination in response to COVID-19. Racism can have significant social, economic, and health impacts, but there has been little systematic investigation of increases in anti-Asian prejudice. Methods: We utilized Twitter’s Streaming Application Programming Interface (API) to collect 3,377,295 U.S. race-related tweets from November 2019–June 2020. Sentiment analysis was performed using support vector machine (SVM), a supervised machine learning model. Accuracy for identifying negative sentiments, comparing the machine learning model to manually labeled tweets was 91%. We investigated changes in racial sentiment before and following the emergence of COVID-19. Results: The proportion of negative tweets referencing Asians increased by 68.4% (from 9.79% in November to 16.49% in March). In contrast, the proportion of negative tweets referencing other racial/ethnic minorities (Blacks and Latinx) remained relatively stable during this time period, declining less than 1% for tweets referencing Blacks and increasing by 2% for tweets referencing Latinx. Common themes that emerged during the content analysis of a random subsample of 3300 tweets included: racism and blame (20%), anti-racism (20%), and daily life impact (27%). Conclusion: Social media data can be used to provide timely information to investigate shifts in area-level racial sentiment.
On March 8, 2020, there was a 650% increase in Twitter retweets using the term “Chinese virus” and related terms. On March 9, there was an 800% increase in the use of these terms in conservative news media articles. Using data from non-Asian respondents of the Project Implicit “Asian Implicit Association Test” from 2007–2020 ( n = 339,063), we sought to ascertain if this change in media tone increased bias against Asian Americans. Local polynomial regression and interrupted time-series analyses revealed that Implicit Americanness Bias—or the subconscious belief that European American individuals are more “American” than Asian American individuals—declined steadily from 2007 through early 2020 but reversed trend and began to increase on March 8, following the increase in stigmatizing language in conservative media outlets. The trend reversal in bias was more pronounced among conservative individuals. This research provides evidence that the use of stigmatizing language increased subconscious beliefs that Asian Americans are “perpetual foreigners.” Given research that perpetual foreigner bias can beget discriminatory behavior and that experiencing discrimination is associated with adverse mental and physical health outcomes, this research sounds an alarm about the effects of stigmatizing media on the health and welfare of Asian Americans.
Purpose:To assess the diagnostic performance of distributed human intelligence for the classification of polyp candidates identified with computer-aided detection (CAD) for computed tomographic (CT) colonography. Materials and Methods:This study was approved by the institutional Office of Human Subjects Research. The requirement for informed consent was waived for this HIPAA-compliant study. CT images from 24 patients, each with at least one polyp of 6 mm or larger, were analyzed by using CAD software to identify 268 polyp candidates. Twenty knowledge workers (KWs) from a crowdsourcing platform labeled each polyp candidate as a true or false polyp. Two trials involving 228 KWs were conducted to assess reproducibility. Performance was assessed by comparing the area under the receiver operating characteristic curve (AUC) of KWs with the AUC of CAD for polyp classification. Results:The detection-level AUC for KWs was 0.845 6 0.045 (standard error) in trial 1 and 0.855 6 0.044 in trial 2. These were not significantly different from the AUC for CAD, which was 0.859 6 0.043. When polyp candidates were stratified by difficulty, KWs performed better than CAD on easy detections; AUCs were 0.951 6 0.032 in trial 1, 0.966 6 0.027 in trial 2, and 0.877 6 0.048 for CAD (P = .039 for trial 2). KWs who participated in both trials showed a significant improvement in performance going from trial 1 to trial 2; AUCs were 0.759 6 0.052 in trial 1 and 0.839 6 0.046 in trial 2 (P = .041). Conclusion:The performance of distributed human intelligence is not significantly different from that of CAD for colonic polyp classification.q RSNA, 2012Supplemental material: http://radiology.rsna.org/lookup /suppl
Purpose Education is an established correlate of cognitive status in older adulthood, but whether expanding educational opportunities would improve cognitive functioning remains unclear given limitations of prior studies for causal inference. Therefore, we conducted instrumental variable (IV) analyses of the association between education and dementia risk, using for the first time in this area, genetic variants as instruments as well as state-level school policies. Methods IV analyses in the Health and Retirement Study cohort (1998–2010) used two sets of instruments: 1) a genetic risk score constructed from three single nucleotide polymorphisms (SNPs) (n=8,054); and 2) compulsory schooling laws (CSLs) and state school characteristics (term length, student teacher ratios, and expenditures) (n=13,167). Results Employing the genetic risk score as an IV, there was a 1.1% reduction in dementia risk per year of schooling (95% CI: −2.4, 0.02). Leveraging compulsory schooling laws and state school characteristics as IVs, there was a substantially larger protective effect (−9.5%; 95% CI: −14.8, −4.2). Analyses evaluating the plausibility of the IV assumptions indicated estimates derived from analyses relying on CSLs provide the best estimates of the causal effect of education. Conclusion IV analyses suggest education is protective against risk of dementia in older adulthood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.