Explaining the reason for model’s output as diabetes positive or negative is crucial for diabetes diagnosis. Because, reasoning the predictive outcome of model helps to understand why the model predicted an instance into diabetes positive or negative class. In recent years, highest predictive accuracy and promising result is achieved with simple linear model to complex deep neural network. However, the use of complex model such as ensemble and deep learning have trade-off between accuracy and interpretability. In response to the problem of interpretability, different approaches have been proposed to explain the predictive outcome of complex model. However, the relationship between the proposed approaches and the preferred approach for diabetes prediction is not clear. To address this problem, the authors aimed to implement and compare existing model interpretation approaches, local interpretable model agnostic explanation (LIME), shapely additive explanation (SHAP) and permutation feature importance by employing extreme boosting (XGBoost). Experiment is conducted on diabetes dataset with the aim of investigating the most influencing feature on model output. Overall, experimental result evidently appears to reveal that blood glucose has the highest impact on model prediction outcome.
The existing heart failure risk prediction models are developed based on machine learning predictors. The objective of this study is to identify the key risk factors that affect the survival time of heart patients and to develop a heart failure survival prediction model using the identified risk factors. A cox proportional hazard regression method is applied to generate the proposed heart failure survival model. We used the dataset from the University of California Irvine (UCI) clinical heart failure data repository. To develop the model we have used multiple risk factors such as age, anemia, creatinine phosphokinase, diabetes history, ejection fraction, presence of high blood pressure, platelet count, serum creatinine, sex, and smoking history. Among the risk factors, high blood pressure is identified as one of the novel risk factors for heart failure. We have validated the performance of the model via statistical and empirical validation. The experimental result shows that the proposed model achieved good discrimination and calibration ability with a C-index (receiver operating characteristic (ROC) of being 0.74 and a log-likelihood ratio of 81.95 using 11 degrees of freedom on the validation dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.