Dielectric Relaxation Spectroscopy (DRS) and Thermally Stimulated Depolarization Current (TSDC) measurements were employed to study dielectric-relaxation processes, structural transitions and electric-polarization phenomena in poly(vinylidenefluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)) terpolymer films. Results from DRS confirm the existence of two separate dispersion regions related to a para-to-ferroelectric phase transition and to the glass transition. The dipolar TSDC peak correlates with the loss peak of the α relaxation that represents the glass transition. The electric polarization calculated from the dipolar TSDC peak (glass transition) shows a non-linear electric-field dependence and saturates at high electric poling fields. As the observed behaviour is essentially the same as that of the electric polarization obtained from direct polarization-versus-electric-field hysteresis measurements, TSDC experiments are also suitable for studying the polarization in relaxor-ferroelectric polymers. A saturation polarization of 44 mC m−2 was found for an electric field of 190 MV m−1.
The existence of an intermediate transition between the glass and the Curie/melting temperatures in Poly(vinylidene fluoride) (PVDF) and some of its co-and ter-polymers has been reported by several authors. In spite (or because?) of various different explanations in the literature, the origins of the transition are still not clear. Here, we try to understand the extra transition in more detail and study it with thermal and dielectric methods on PVDF, on its co-polymers with trifluoroethylene (P(VDF-TrFE)) and tetrafluoroethylene (P(VDF-TFE)), and on its ter-polymer with trifluoroethylene and chlorofluoroethylene (P(VDF-TrFE-CFE).Based on interpretations from the literature and our experimental studies, we propose the new hypothesis that the intermediate transition should have several interrelated origins. Especially since the relevant range is not far above room temperature, better understanding and control of their properties may also have practical implications for the use of the respective polymer materials in devices.
Polyvinylidene fluoride (PVDF)-based copolymers with tetrafluoroethylene (P(VDF-TFE)), trifluoroethylene (P(VDF-TrFE)) or hexafluoropropylene (P(VDF-HFP)) are of strong interest due to the underlying fundamental mechanisms and the potential ferro-, pyro- and piezo-electrical applications. Their flexibility and their adaptability to various shapes are advantageous in comparison to inorganic ferroelectrics. Here, we study the influence of stretching temperature on the crystalline phases and the dielectric properties in P(VDF-TFE) films by means of Dielectric Relaxation Spectroscopy (DRS), Fourier-Transform InfraRed spectroscopy (FTIR), Wide-Angle X-ray Diffraction (WAXD), Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). Especially, the effect of stretching and the influence of the temperature of stretching on the mid-temperature ([Formula: see text]) transition are studied in detail. The results show that stretching has a similar effect as that on PVDF, and we observe an increase in the fraction of ferroelectric [Formula: see text]-phase with a simultaneous increment in both melting point ([Formula: see text]) and crystallinity ([Formula: see text]) of the copolymer. While an increase in the stretching temperature does not have a profound impact on the amount of ferroelectric phase, the stability of the ferroelectric phase seems to improve — as seen in the reduction of the Full Width at Half Maximum (FWHM) of the WAXD peaks in both parallel and perpendicular directions to the molecular chain axis. The observation is also supported by the reduction of dissipation losses with an increase in stretching temperature — as seen in DRS measurements. Finally, both stretching itself and the temperature of stretching affect the various molecular processes taking place in the temperature range of the [Formula: see text] transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.