MPL and GDL in a PEM fuel cell assembly are often treated as separate layers in the literature. However, there exists a considerable interfacial region where the two different materials merge. The MPL consists of fine carbon particles, a binder and a solvent that is applied on top of the fibrous GDL. In the process of coating, the MPL intrudes into the GDL and forms an MPL-GDL-composite region. This region has properties that differ from either of the materials that it consists of. Through-plane thermal conductivity and thickness variation under different compaction pressures were measured for such a composite region of commercial gas diffusion layer (GDL), Freudenberg H1410, and custom-made MPL. Thermal conductivity at 9.2 bar compaction pressure for GDL only is 0.111 ± 0.009 W K-1 m-1, for MPL only 0.08 ± 0.02 W K-1 m-1, and for the composite region is 0.124 ± 0.005 W K-1 m-1. X-Ray Computed Tomography images of the materials ascertain the level of penetration for the MPL into the GDL.
A simple, modified Metal–Organic Chemical Deposition (MOCD) method for Pt, PtRu and PtCo nanoparticle deposition onto a variety of support materials, including C, SiC, B4C, LaB6, TiB2, TiN and a ceramic/carbon nanofiber, is described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.