In Mobile Robotics, visual tracking is an extremely important sub-problem. Some solutions found to reduce the problems arising from partial and total occlusion are the use of multiple robots. In this work, we propose a three-dimensional space target tracking based on a constrained multi-robot visual data fusion on the occurrence of partial and total occlusion. To validate our approach we first implemented a non-cooperative visual tracking where only the data from a single robot is used. Then, a cooperative visual tracking was tested, where the data from a team of robots is fused using a particle filter. To evaluate both approaches, a visual tracking environment with partial and total occlusions was created where the tracking was performed by a team of robots. The result of the experiment shows that the non-cooperative approach presented a lower computational cost than the cooperative approach but the inferred trajectory was impaired by the occlusions, a fact that did not occur in the cooperative approach due to the data fusion.
In this work, we address the problem of convergence and cohesiveness of an unmanned aerial vehicle (UAV) flocking. Thus, we propose a proximal control-based method for UAV self-organized flocking. Our method efficiently achieves flocking in the absence of alignment control and moves into an arbitrary direction without any direction control or informed robots. Robots use a Lennard-Jones potential function to maintain the cohesiveness of the flocking while avoiding collision within the teammates. We evaluate our approach using the order metric, the steady-state value, and the settling time that can be used as a cohesiveness indicator.
In this work, we propose an improved artificially weighted spanning tree coverage (IAWSTC) algorithm for distributed coverage path planning of multiple flying robots. The proposed approach is suitable for environment exploration in cluttered regions, where unexpected obstacles can appear. In addition, we present an online re-planner smoothing algorithm with unexpected detected obstacles. To validate our approach, we performed simulations and real robot experiments. The results showed that our proposed approach produces sub-regions with less redundancy than its previous version.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.