Polymyxin B remains the last-line treatment option for multidrug-resistant Gram-negative bacterial infections. Current U.S. Food and Drug Administration-approved prescribing information recommends that polymyxin B dosing should be adjusted according to the patient's renal function, despite studies that have shown poor correlation between creatinine and polymyxin B clearance. The objective of the present study was to determine whether steady-state polymyxin B exposures in patients with normal renal function were different from those in patients with renal insufficiency. Nineteen adult patients who received intravenous polymyxin B (1.5 to 2.5 mg/kg [actual body weight] daily) were included. To measure polymyxin B concentrations, serial blood samples were obtained from each patient after receiving polymyxin B for at least 48 h. The primary outcome was polymyxin B exposure at steady state, as reflected by the area under the concentration-time curve (AUC) over 24 h. Five patients had normal renal function (estimated creatinine clearance [CL CR ] Ն 80 ml/min) at baseline, whereas 14 had renal insufficiency (CL CR Ͻ 80 ml/min). The mean AUC of polymyxin B Ϯ the standard deviation in the normal renal function cohort was 63.5 Ϯ 16.6 mg·h/liter compared to 56.0 Ϯ 17.5 mg·h/liter in the renal insufficiency cohort (P ϭ 0.42). Adjusting the AUC for the daily dose (in mg/kg of actual body weight) did not result in a significant difference (28.6 Ϯ 7.0 mg·h/liter versus 29.7 Ϯ 11.2 mg·h/liter, P ϭ 0.80). Polymyxin B exposures in patients with normal and impaired renal function after receiving standard dosing of polymyxin B were comparable. Polymyxin B dosing adjustment in patients with renal insufficiency should be reexamined.KEYWORDS polymyxins, dosing adjustment, drug exposure P arenteral polymyxins (polymyxin B and polymyxin E [colistin]) have become one of the most important antibiotics for therapy of extensively drug-resistant Gramnegative bacterial infections over the past decade, including infections caused by carbapenem-resistant nonfermenters and carbapenem-resistant Enterobacteriaceae. The similarities and differences between polymyxin B and colistin have been reviewed elsewhere (1). Polymyxin B has been increasingly used due to the active drug form used, more straight-forward dosing, more favorable pharmacokinetics, and potentially lower incidence of nephrotoxicity than colistin (2, 3). Current U.S. Food and Drug Administration-approved prescribing information recommends polymyxin B dosing adjustment in patients with renal insufficiency (package inserts from Bedford Laboratories,
Background: There is no generally accepted methodology for in vivo assessment of antiviral activity in SARS-CoV-2 infections. Ivermectin has been recommended widely as a treatment of COVID-19, but whether it has clinically significant antiviral activity in vivo is uncertain.Methods: In a multicentre open label, randomized, controlled adaptive platform trial, adult patients with early symptomatic COVID-19 were randomized to one of six treatment arms including high dose oral ivermectin (600µg/kg daily for seven days), the monoclonal antibodies casirivimab and imdevimab (600mg/600mg), and no study drug. The primary outcome was the comparison of viral clearance rates in the modified intention-to-treat population (mITT). This was derived from daily log10 viral densities in standardized duplicate oropharyngeal swab eluates. This ongoing trial is registered at ClinicalTrials.gov (NCT05041907).Results: Randomization to the ivermectin arm was stopped after enrolling 205 patients into all arms, as the prespecified futility threshold was reached. Following ivermectin the mean estimated rate of SARS-CoV-2 viral clearance was 9.1% slower [95%CI -27.2% to +11.8%; n=45] than in the no drug arm [n=41], whereas in a preliminary analysis of the casirivimab/imdevimab arm it was 52.3% faster [95%CI +7.0% to +115.1%; n=10 (Delta variant) versus n=41].Conclusions: High dose ivermectin did not have measurable antiviral activity in early symptomatic COVID-19. Pharmacometric evaluation of viral clearance rate from frequent serial oropharyngeal qPCR viral density estimates is a highly efficient and well tolerated method of assessing SARS CoV-2 antiviral therapeutics in vivo.Funding: 'Finding treatments for COVID-19: A phase 2 multi-centre adaptive platform trial to assess antiviral pharmacodynamics in early symptomatic COVID-19 (PLAT-COV)' is supported by the Wellcome Trust Grant ref: 223195/Z/21/Z through the COVID-19 Therapeutics Accelerator.Clinical trial number: ClinicalTrials.gov (NCT05041907).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.