A cataract is a complex multifactorial disease that results from alterations in the cellular architecture, i.e. lens proteins. Genes associated with the development of lens include crystallin genes. Although crystallins are highly conserved proteins among vertebrates, a significant number of polymorphisms exist in human population. In this study, we screened for polymorphisms in crystallin alpha A (CRYAA) and alpha B (CRYAB) genes in 200 patients over 40 years of age, diagnosed with age-related cataract (ARC; nuclear and cortical cataracts). Genomic DNA was extracted from the peripheral blood. The coding regions of the CRYAA and CRYAB gene were amplified using polymerase chain reaction and subjected to restriction digestion. Restriction fragment length polymorphism (RFLP) was performed using known restriction enzymes for CRYAA and CRYAB genes. Denaturing high performance liquid chromatography and direct sequencing were performed to detect sequence variation in CRYAA gene. In silico analysis of secondary CRYAA mRNA structure was performed using CLC RNA Workbench. RFLP analysis did not show any changes in the restriction sites of CRYAA and CRYAB genes. In 6 patients (4 patients with nuclear cataract and 2 with cortical cataract), sequence analysis of the exon 1 in the CRYAA gene showed a silent single nucleotide polymorphism [D2D] (CRYAA: C to T transition). One of the patients with nuclear cataract was homozygous for this allele. The in silico analysis revealed that D2D mutation results in a compact CRYAA mRNA secondary structure, while the wild type CRYAA mRNA has a weak or loose secondary structure. D2D mutation in the CRYAA gene may be an additional risk factor for progression of ARC.
Antioxidants such as glutathione significantly decrease in age-related nuclear and cortical cataract and an AGE, argpyrimidine are present at significantly higher levels in nuclear cataract.
An important toxin-antitoxin (TA) system hok/sok, encoded by R1 plasmid of Escherichia coli, is involved in the post segregation killing of cells that have lost the plasmid. The lethal properties of hok protein have been utilized for the environmental containment of microbes and the development of potential vaccine candidates. This study aimed to demonstrate the potent anti-microbial property of a 19 amino acid (AA) long N-terminal fragment of hok peptide. This was accomplished by designing a conditional suicide system based on hok gene expression cloned in an anhydrotetracycline (aTc) inducible vector-pASK75. Heat shock and electroporation were utilized for the transformation of Escherichia coli and Vibrio cholerae cells, respectively. The minimal induction concentration (MI d C) of aTc, determined by analyzing the expression of green fluorescent protein cloned separately into pASK75 vector, was 30 ng/mL. As hok gene was synthesized de novo (using recombinant polymerase chain reaction) in our study, various random sized hok fragments were generated (as a result of the error-prone nature of Taq polymerase). The smallest hok fragment able to bring about effective antimicrobial killing was a 19 AA long N-terminal fragment of hok having the wild type sequence, except for the carboxy terminus AA residue. The MI d C of aTc in our experiments was 6-fold lower than previously reported, making our bacterial clones suitable for use in mammalian systems as potential vaccine candidates. Based on our experiments, we hypothesize the 19 AA long N-terminal fragment of hok peptide to be the smallest possible hok fragment sufficient to bring about effective antimicrobial killing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.