Anaerobic treatment processes have achieved popularity in treating palm oil mill effluent due to its high treatability and biogas generation. The use of externally submerged membranes with anaerobic reactors promotes the retention of the biomass in the reactor. This study was conducted in thermophilic conditions with the Polytetrafluoroethylene hollow fiber (PTFE-HF) membrane which was operated at 55 °C. The reactor was operated at Organic Loading Rates (OLR) of 2, 3, 4, 6, 8, and 10 kg Chemical Oxygen Demand (COD)/m3·d to investigate the treatment performance and the membrane operation. The efficiency of the COD removal achieved by the system was between 93–98%. The highest methane yield achieved was 0.56 m3 CH4/kg CODr. The reactor mixed liquor volatile suspended solids (MLVSS) was maintained between 11.1 g/L to 20.9 g/L. A dead-end mode PTFE hollow fiber microfiltration was operated with the constant flux of 3 LMH (L/m2·h) in permeate recirculation mode to separate the clear final effluent and retain the biomass in the reactor. Membrane fouling was one of the limiting factors in the membrane bioreactor application. In this study, organic fouling was observed to be 93% of the total membrane fouling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.