Small heat shock proteins (sHsps) are a conserved protein family, with members found in all organisms analysed so far. Several sHsps have been shown to exhibit chaperone activity and protect proteins from irreversible aggregation in vitro. Here we show that Hsp26, an sHsp from Saccharomyces cerevisiae, is a temperature-regulated molecular chaperone. Like other sHsps, Hsp26 forms large oligomeric complexes. At heat shock temperatures, however, the 24mer chaperone complex dissociates. Interestingly, chaperone assays performed at different temperatures show that the dissociation of the Hsp26 complex at heat shock temperatures is a prerequisite for efficient chaperone activity. Binding of non-native proteins to dissociated Hsp26 produces large globular assemblies with a structure that appears to be completely reorganized relative to the original Hsp26 oligomers. In this complex one monomer of substrate is bound per Hsp26 dimer. The temperature-dependent dissociation of the large storage form of Hsp26 into a smaller, active species and the subsequent re-association to a defined large chaperone-substrate complex represents a novel mechanism for the functional activation of a molecular chaperone.
Small heat shock proteins (sHsps) are ubiquitous molecular chaperones that prevent the unspecific aggregation of proteins. So far, Hsp26 was the only unambiguously identified member of the sHsp family in Saccharomyces cerevisiae. We show here that the sHsp system in the cytosol of S. cerevisiae consists of two proteins, Hsp26 and Hsp42. Hsp42 forms large dynamic oligomers with a barrel-like structure. In contrast to Hsp26, which functions predominantly at heat shock temperatures, Hsp42 is active as a chaperone under all conditions tested in vivo and in vitro. Under heat shock conditions, both Hsp42 and Hsp26 suppress the aggregation of one-third of the cytosolic proteins. This subset is about 90% overlapping for Hsp42 and Hsp26. The sHsp substrates belong to different biochemical pathways. This indicates a general protective function of sHsps for proteome stability in S. cerevisiae. Consistent with this observation, sHsp knockout strains show phenotypical defects. Taken together, our results define Hsp42 as an important player for protein homeostasis at physiological and under stress conditions.
Although spider silks have been studied for decades, the assembly properties of the underlying silk proteins have still not been unravelled. Previously, the detection of amyloid-like nanofibrils in the spider's silk gland suggested their involvement in the assembly process.Recombinantly produced spider silk also self-assembles into nanofibrils. In order to investigate the structural properties of such silk nanofibrils in more detail, they have been compared to amyloid-like fibrils to highlight structural similarities.
The ubiquitous small heat shock proteins (sHsps) are efficient molecular chaperones that interact with nonnative proteins, prevent their aggregation, and support subsequent refolding. No obvious substrate specificity has been detected so far. A striking feature of sHsps is that they form large complexes with nonnative proteins. Here, we used several well established model chaperone substrates, including citrate synthase, ␣-glucosidase, rhodanese, and insulin, and analyzed their interaction with murine Hsp25 and yeast Hsp26 upon thermal unfolding. The two sHsps differ in their modes of activation. In contrast to Hsp25, Hsp26 undergoes a temperature-dependent dissociation that is required for efficient substrate binding. Our analysis shows that Hsp25 and Hsp26 reacted in a similar manner with the nonnative proteins. For all substrates investigated, complexes of defined size and shape were formed. Interestingly, several different nonnative proteins could be incorporated into defined sHsp-substrate complexes. The first substrate protein bound seems to determine the complex morphology. Thus, despite the differences in quaternary structure and mode of activation, the formation of large uniform sHsp-substrate complexes seems to be a general feature of sHsps, and this unique chaperone mechanism is conserved from yeast to mammals.In response to environmental stress such as heat shock, which leads to the accumulation of nonnative proteins, cells increase the expression of several classes of proteins (1). The major conserved families of these heat shock proteins (Hsps) 1 have been shown to be involved in protein folding as molecular chaperones (2).The most divergent of these chaperone classes are the small heat shock proteins (sHsps). sHsps have been found in almost all organisms investigated so far, with the number of members varying from species to species. They share conserved regions mostly in the C-terminal part of the protein, whereas the Nterminal part differs in sequence and length, leading to molecular masses of 16 -42 kDa for sHsps in different organisms (3). The conserved C-terminal domain of ϳ100 amino acids shares sequence homology with the major eye lens protein ␣A-crystallin (4). Almost all sHsps assemble into large oligomeric complexes of 9 to Ͼ30 subunits, and complexes in the range of 125 kDa to 2 MDa have been found (5-11). Some sHsps such as those from plants form assemblies with well defined stoichiometries, whereas other sHsps, including the mammalian proteins, form a range of oligomeric sizes (12, 13). This polydispersity has limited the amount of structural information available. The crystal structure of an archaeal sHsp (14) and the cryo-electron microscopy reconstruction of ␣B-crystallin (15) revealed that the overall organization is that of a hollow globular sphere. A variation of this scheme is the three-dimensional structure of wheat Hsp16.9, which assembles into a dodecameric double disk, where each disk is organized as a trimer of dimers (16). Many sHsps have dynamic and variable quaternary s...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.