The optimal timing of aortic valve replacement (AVR) remains controversial. Several biomarkers reflect the underlying pathophysiological processes in aortic stenosis (AS) and may be of use as mortality predictors. The aim of this systematic review and meta-analysis is to evaluate the blood biomarkers utilised in AS and assess whether they associate with mortality. PubMed and Embase were searched for studies reporting baseline biomarker level and mortality outcomes in patients with AS. A total of 83 studies met the inclusion criteria and were systematically reviewed. Of these, 21 reporting brain natriuretic peptide (BNP), N-terminal pro B-type natriuretic peptide (NT-proBNP), Troponin and Galectin-3 were meta-analysed. Pooled analysis demonstrated that all-cause mortality was significantly associated with elevated baseline levels of BNP (HR 2.59; 95% CI 1.95–3.44; p < 0.00001), NT-proBNP (HR 1.73; 95% CI 1.45–2.06; p = 0.00001), Troponin (HR 1.65; 95% CI 1.31–2.07; p < 0.0001) and Galectin-3 (HR 1.82; 95% CI 1.27–2.61; p < 0.001) compared to lower baseline biomarker levels. Elevated levels of baseline BNP, NT-proBNP, Troponin and Galectin-3 were associated with increased all-cause mortality in a population of patients with AS. Therefore, a change in biomarker level could be considered to refine optimal timing of intervention. The results of this meta-analysis highlight the importance of biomarkers in risk stratification of AS, regardless of symptom status.
Cardiovascular magnetic resonance (CMR) imaging has had a vast impact on the understanding of a wide range of disease processes and pathophysiological mechanisms. More recently, it has contributed significantly to the diagnosis and risk stratification of patients with valvular heart disease. With its increasing use, CMR allows for a detailed, reproducible, qualitative, and quantitative evaluation of left ventricular volumes and mass, thereby enabling assessment of the haemodynamic impact of a valvular lesion upon the myocardium. Postprocessing of the routinely acquired images with feature tracking CMR methodology can give invaluable information about myocardial deformation and strain parameters that suggest subclinical ventricular impairment that remains undetected by conventional measures such as the ejection fraction (EF). T1 mapping and late gadolinium enhancement (LGE) imaging provide deep myocardial tissue characterisation that is changing the approach towards risk stratification of patients as an increasing body of evidence suggests that the presence of fibrosis is related to adverse events and prognosis. This review summarises the current evidence regarding the utility of CMR in the left ventricular assessment of patients with aortic stenosis or mitral regurgitation and its value in diagnosis, risk stratification, and management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.