Porous ceramic candle filters (PCCF) were prepared by sintering silica from rice husk with silver nanoparticles (AgNPs)/zeolite A at about 1050 °C to create bactericidal PCCF/AgNPs for water disinfection. The silver content in PCCF/AgNPs was of 300-350 mg kg −1 determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and the average pore size of PCCF/AgNPs was of 50-70 Å measured by Brunauer-Emmett-Teller (BET) method. The bactericidal activity and silver release of PCCF/AgNPs have been investigated by flow test with water flow rate of 5 L h −1 and initial inoculation of E. coli in inlet water of 10 6 CFU/100 mL. The volume of filtrated water was collected up to 500 L. Results showed that the contamination of E. coli in filtrated water was <1 CFU/100 mL and the content of silver released from PCCF/AgNPs into filtrated water was <1 μg L −1 , it is low, far under the WHO guideline of 100 μg L −1 at maximum for drinking water. Based on the content of silver in PCCF/AgNPs and in filtrated water, it was estimated that one PCCF/AgNPs could be used to filtrate of ∼100 m 3 water. Thus, as-prepared PCCF/AgNPs releases low content of silver into water and shows effectively bactericidal activity that is promising to apply as point-of-use water treatment technology for drinking water disinfection.
Silver nanoparticles (AgNPs) deposited on silica were synthesized by gamma Co-60 irradiation of Ag+ dispersion in silica/ethanol/water mixture (9/80/20:w/v/v). The reduction of Ag+ is occurred by hydrated electron (e−aq) and hydrogen atom (H•) generated during radiolysis of ethanol/water. The conversion doses (Ag+ → Ag0) were determined by UV–Vis spectroscopy. The synthesized AgNPs/silica were characterized by transmission electron microscopy (TEM) and x-ray diffraction (XRD), which showed the size of AgNPs to be in the range of 5–40 nm for Ag+ concentrations from 5 to 20 mM. Masterbatches of PE/AgNPs/silica compound with silver content from 250 to 1000 mg kg−1 were also prepared. These masterbatches can be suitably used for various applications such as antimicrobial food containers and packing films, etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.