There have been many machine learning-based studies to forecast stock price trends. These studies attempted to extract input features mostly from the price information with little focus on the trading volume information. In addition, modeling parameters to specify a learning problem have not been intensively investigated. We herein develop an improved method by handling those limitations. Specifically, we generated input variables by considering both price and volume information with even weight. We also defined three modeling parameters: the input and the target window sizes and the profit threshold. These specify the input and target variables, between which the underlying functions are learned by multilayer perceptrons and support vector machines. We tested our approach over six stocks and 15 years and compared with the expected performance over all considered parameter specifications. Our approach dramatically improved the prediction accuracy over the expected performance. In addition, our approach was shown to be stably more profitable than both the expected performance and the buy-and-hold strategy. On the other hand, the performance was degraded when the input variables generated from the trading volume were excluded from learning. All these results validate the importance of the volume and the modeling parameters in stock trading prediction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.