An ultrahigh-performance liquid chromatography in combination with high-resolution mass spectrometry Thermo Q-Extractive Focus Orbitrap MS has been introduced for analysis of multiclass pesticides in vegetable samples collected in Hanoi, Vietnam. Multiclass pesticides were separated on the Thermo Hypersil Gold PFP column utilizing a gradient of the mobile phase consisting of 5 mM ammonium formate, 0.1% formic acid in deionized water, and methanol. The target analytes were detected in the full-scan mode on Thermo Scientific Q-Exactive Focus Orbitrap MS for quantitation at the optimum operating conditions. These conditions included, but not limit to, the resolution of 70000 at the full width at half maximum in both positive and negative mode, mass range from 80 to 1000 m/z, and optimized parameters for the heated electrospray ionization source. The identification of the analytes in real samples was based on retention times, mass to charge ratios, mass accuracies, and MS/MS spectra at the confirmation mode with the inclusion list of target analytes. The mass accuracies of target analytes were from −4.14 ppm (dinotefuran) to 1.42 ppm (cinosulfuron) in the neat solvent and from −3.91 ppm (spinosad D) to 1.29 ppm (cinosulfuron) in the matrix-matched solution. Target analytes in the vegetable-based matrix were extracted by the QuEChERS method. Some critical parameters of the analytical method such as linearity, repeatability, limit of detection, and limit of quantitation have been evaluated and implemented. Excellent LOD and LOQ of the developed method were achieved at the range of 0.04–0.85 and 0.13–2.9 μg·kg−1, respectively. Intraday and interday repeatability of the analytical signal (peak area, n=6) of the developed method were below 3% and 10%, correspondingly. The matrix effect, extraction recovery, and overall recovery were fully investigated by spiking experiments. Experimental results demonstrated that the ionization suppression or enhancement was the main contribution on the overall recoveries of target analytes. Finally, the in-house validated method was applied to pesticides screening in vegetables samples in local villages in Hanoi, Vietnam. The concentrations of all target analytes were below limit of quantitation and lower than US-FDA or EU maximum residue levels.
Polycyclic aromatic hydrocarbons (PAHs), the family of organic contaminations, have been shown to have negative effects on human health. However, until now, the comprehension on occurrence, distribution, and risk assessment of human exposure to PAHs has been limited in Vietnam. In this work, a capillary gas chromatography coupled with electron impact ionization tandem mass spectrometry (GC-EI-MS/MS) has been introduced for analysis of 16 PAHs in some particulate matter samples. PAHs have been separated on the TG 5 ms capillary gas chromatographic column and detected by tandem mass spectrometry in multiple reaction monitoring mode. The PAHs in the particulate matter (PM 2.5 and PM 10) samples were extracted by ultrasonic-assisted liquid extraction and cleaned up by an acidic silica gel solid phase extraction. The linearity range of all analyzed PAHs was from 5 to 2000 ng mL−1 with R2 ≥0.9990. Limit of detection (LOD) of PAHs in particulate matter sample was from 0.001 ng m−3 (Br-Naph) to 0.276 ng m−3 (Fln). The recovery of PAHs was investigated by international proficiency testing samples. The recoveries of PAHs in proficiency testing sample ranged from 79.3% (Chr) to 109.8% (IcdP). The in-house validated GC-EI-MS/MS method was then applied to analysis of some particulate matter samples that were collected in the Hanoi areas. The total concentrations of PAHs in several brands of samples collected from Hanoi were found in the range of 226.3 ng m−3–706.43 ng m−3. Among the studied compounds, naphthalene was found at high frequency and ranged from 106.5 ng m−3 to 631.1 ng m−3. The main distribution of the PAHs in particulate matter samples was two-ring and three-ring compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.