Objectives Studies have shown that patients harboring bicuspid aortic valve (BAV) or bovine aortic arch (BAA) are more likely to develop ascending aortic aneurysm (AsAA) than the general population. A thorough quantification of the AsAA tissue properties for these patient groups may offer insight into the underlying mechanisms of AsAA development in these patients. Thus, the objective of this study was to investigate and compare the mechanical and microstructural properties of aortic tissues from AsAA patients with and without concomitant BAV or BAA. Materials and methods AsAA (n = 20), BAV (n = 20) and BAA (n = 15) human tissues were obtained from patients who underwent elective AsAA surgery. Planar biaxial and uniaxial failure tests were used to characterize the mechanical and failure properties of the tissues, respectively. Histological analysis was performed to detect the medial degenerative characteristics of aortic aneurysm. Individual layer thickness and composition were quantified for each patient group. Results The circumferential (CIRC) response of the BAV samples was stiffer than both AsAA (p = 0.473) and BAA (p = 0.152) tissues at low load. The BAV tissues were nearly isotropic while AsAA and BAA tissues were anisotropic. The areal strain of BAV samples were significantly less than AsAA (p = 0.041) and BAA (p = 0.004) tissues at a low load. The BAA samples were similar to the AsAA samples in both mechanical and failure properties. On the microstructural level, all samples displayed moderate medial degeneration characterized by elastin fragmentation, cell loss, mucoid accumulation and fibrosis. The ultimate tensile strength of BAV and BAA tissues were also found to decrease with age. Conclusions The BAV tissues were stiffer than both AsAA and BAA tissues, and the BAA tissues were similar to the AsAA tissues. The BAV samples were thinnest with less elastin than AsAA and BAA samples, which may attribute to the loss of extensibility at low load of these tissues. No apparent difference in failure mechanics among the tissue groups suggests that each of the patient groups may have a similar risk of rupture.
Objective Bovine pericardium (BP) has been identified as a choice biomaterial for the development of surgical bioprosthetic heart valves (BHV) and transcatheter aortic valves (TAV). Porcine pericardium (PP) and younger BP have been suggested as candidates TAV leaflet biomaterials for smaller-profile devices due to their reduced thickness; however, their mechanical and structural properties remain to be fully characterized. This study characterized the material properties of chemically treated thick (PPK) and thin (PPN) PP, as well as fetal (FBP), calf (CBP) and adult (ABP) BP tissues in order to better understand their mechanical behavior. Methods Planar biaxial testing and uniaxial failure testing methods were employed to quantify tissue mechanical responses and failure properties. Fiber characteristics were examined using histological analysis. Results ABP and CBP tissues were significantly stiffer and stronger than the younger FBP tissues. Histological analysis revealed a significantly larger concentration of thin immature collagen fibers in the FBP tissues than in the ABP and CBP tissues. While PP tissues were thinnest, they were stiffer and less extensible than the BP tissues. Conclusions Due to comparable mechanical properties but significantly reduced thickness, CBP tissue may be a more suitable material for TAV manufacturing than ABP tissue. FBP tissue, despite its reduced thickness and higher flexibility, was weaker and should be studied in more detail. Although PP tissues are the thinnest, they were least extensible and failed at earlier strain than BP tissues. The differences between PP and BP tissues should be further investigated and suggest that they should not be used interchangeably in the manufacturing of TAV.
Objectives Currently, percutaneous aortic valve (PAV) replacement devices are being investigated to treat aortic stenosis in patients deemed to be of too high a risk for conventional open-chest surgery. Successful PAV deployment and function are heavily reliant on the tissue–stent interaction. Many PAV feasibility trials have been conducted with porcine models under the assumption that these tissues are similar to human; however, this assumption may not be valid. The goal of this study was to characterize and compare the biomechanical properties of aged human and porcine aortic tissues. Methods The biaxial mechanical properties of the left coronary sinus, right coronary sinus, non-coronary sinus, and ascending aorta of eight aged human (90.1 ± 6.8 years) and 10 porcine (6–9 months) hearts were quantified. Tissue structure was analyzed via histological techniques. Results Aged human aortic tissues were significantly stiffer than the corresponding porcine tissues in both the circumferential and longitudinal directions (p < 0.001). In addition, the nearly linear stress–strain behavior of the porcine tissues, compared with the highly nonlinear response of the human tissues at a low strain range, suggested structural differences between the aortic tissues from these two species. Histological analysis revealed that porcine samples were composed of more elastin and less collagen fibers than the respective human samples. Conclusions Significant material and structural differences were observed between the human and porcine tissues, which raise questions on the validity of using porcine models to investigate the biomechanics involved in PAV intervention.
Aortic aneurysm is a leading cause of death in adults, often taking lives without any premonitory signs or symptoms. Adverse clinical outcomes of aortic aneurysm are preventable by elective surgical repair; however, identifying at-risk individuals is difficult. The objective of this study was to perform a predictive biomechanical analysis of ascending aortic aneurysm (AsAA) tissue to assess rupture risk on a patient-specific level. AsAA tissues, obtained intra-operatively from 50 patients, were subjected to biaxial mechanical and uniaxial failure tests to obtain their passive elastic mechanical properties. A novel analytical method was developed to predict the AsAA pressure-diameter response as well as the aortic wall yield and failure responses. Our results indicated that the mean predicted AsAA diameter at rupture was 5.6 ± 0.7 cm, and the associated blood pressure to induce rupture was 579.4 ± 214.8 mmHg. Statistical analysis showed significant positive correlation between aneurysm tissue compliance and predicted risk of rupture, where patients with a pressure-strain modulus ≥100 kPa may be nearly twice as likely to experience rupture than patients with more compliant aortic tissue. The mechanical analysis of pre-dissection patient tissue properties established in this study could predict the “future” onset of yielding and rupture in AsAA patients. The analysis results implicate decreased tissue compliance as a risk factor for AsAA rupture. The presented methods may serve as a basis for the development of a pre-operative planning tool for AsAA evaluation, a tool currently unavailable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.