Macadamia is an Australian native rainforest tree that has been domesticated and traded internationally for its premium nuts. Common cultivars rely upon a limited gene pool that has exploited only two of the four species. Introducing a more diverse germplasm will broaden the genetic base for future crop improvement and better adaptation for changing environments. This study investigated the genetic structure of 302 accessions of wild germplasm using 2872 SNP and 8415 silicoDArT markers. Structure analysis and principal coordinate analysis (PCoA) assigned the 302 accessions into four distinct groups: (i) Macadamia integrifolia, (ii) M. tetraphylla, and (iii) M. jansenii and M. ternifolia, and (iv) admixtures or hybrids. Assignment of the four species matched well with previous characterisations, except for one M. integrifolia and four M. tetraphylla accessions. Using SNP markers, 94 previously unidentified accessions were assigned into the four distinct groups. Finally, 287 accessions were identified as pure examples of one of the four species and 15 as hybrids of M. integrifolia and M. tetraphylla. The admixed accessions showed the highest genetic diversity followed by M. integrifolia, while M. ternifolia and M. jansenii accessions were the least diverse. Mantel test analysis showed a significant correlation between genetic and geographic distance for M. integrifolia (r = 0.51, p = 0.05) and a positive but not significant correlation for M. tetraphylla (r = 0.45, p = 0.06). This study provides a population genetics overview of macadamia germplasm as a background for a conservation strategy and provides directions for future macadamia breeding.
Macadamia is a recently domesticated Australian native nut crop, and a large proportion of its wild germplasm is unexploited. Aiming to explore the existing diversity, 247 wild accessions from four species and inter-specific hybrids were phenotyped. A wide range of variation was found in growth and nut traits. Broad-sense heritability of traits were moderate (0.43–0.64), which suggested that both genetic and environmental factors are equally important for the variability of the traits. Correlations among the growth traits were significantly positive (0.49–0.76). There were significant positive correlations among the nut traits except for kernel recovery. The association between kernel recovery and shell thickness was highly significant and negative. Principal component analysis of the traits separated representative species groups. Accessions from Macadamia integrifolia Maiden and Betche, M. tetraphylla L.A.S. Johnson, and admixtures were clustered into one group and those of M. ternifolia F. Muell were separated into another group. In both M. integrifolia and M. tetraphylla groups, variation within site was greater than across sites, which suggested that the conservation strategies should concentrate on increased sampling within sites to capture wide genetic diversity. This study provides a background on the utilisation of wild germplasm as a genetic resource to be used in breeding programs and the direction for gene pool conservation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.