With more than 30,000 species, ray-finned fish represent approximately half of vertebrates. The evolution of ray-finned fish was impacted by several whole genome duplication (WGD) events including a teleost-specific WGD event (TGD) that occurred at the root of the teleost lineage about 350 million years ago (Mya) and more recent WGD events in salmonids, carps, suckers and others. In plants and animals, WGD events are associated with adaptive radiations and evolutionary innovations. WGD-spurred innovation may be especially relevant in the case of teleost fish, which colonized a wide diversity of habitats on earth, including many extreme environments. Fish biodiversity, the use of fish models for human medicine and ecological studies, and the importance of fish in human nutrition, fuel an important need for the characterization of gene expression repertoires and corresponding evolutionary histories of ray-finned fish genes. To this aim, we performed transcriptome analyses and developed the PhyloFish database to provide (i) de novo assembled gene repertoires in 23 different ray-finned fish species including two holosteans (i.e. a group that diverged from teleosts before TGD) and 21 teleosts (including six salmonids), and (ii) gene expression levels in ten different tissues and organs (and embryos for many) in the same species. This resource was generated using a common deep RNA sequencing protocol to obtain the most exhaustive gene repertoire possible in each species that allows between-species comparisons to study the evolution of gene expression in different lineages. The PhyloFish database described here can be accessed and searched using RNAbrowse, a simple and efficient solution to give access to RNA-seq de novo assembled transcripts.
Egg quality is a complex biological trait and a major determinant of reproductive fitness in all animals. This study delivered the first proteomic portraits of egg quality in zebrafish, a leading biomedical model for early development. Egg batches of good and poor quality, evidenced by embryo survival for 24 h, were sampled immediately after spawning and used to create pooled or replicated sample sets whose protein extracts were subjected to different levels of fractionation before liquid chromatography and tandem mass spectrometry. Obtained spectra were searched against a zebrafish proteome database and detected proteins were annotated, categorized and quantified based on normalized spectral counts. Manually curated and automated enrichment analyses revealed poor quality eggs to be deficient of proteins involved in protein synthesis and energy and lipid metabolism, and of some vitellogenin products and lectins, and to have a surfeit of proteins involved in endo-lysosomal activities, autophagy, and apoptosis, and of some oncogene products, lectins and egg envelope proteins. Results of pathway and network analyses suggest that this aberrant proteomic profile results from failure of oocytes giving rise to poor quality eggs to properly transit through final maturation, and implicated Wnt signaling in the etiology of this defect. Quantitative comparisons of abundant proteins in good versus poor quality eggs revealed 17 candidate egg quality markers. Thus, the zebrafish egg proteome is clearly linked to embryo developmental potential, a phenomenon that begs further investigation to elucidate the root causes of poor egg quality, presently a serious and intractable problem in livestock and human reproductive medicine.
The molecular mechanisms underlying and determining egg developmental competence remain poorly understood in vertebrates. Nucleoplasmin (Npm2) is one of the few known maternal effect genes in mammals, but this maternal effect has never been demonstrated in nonmammalian species. A link between developmental competence and the abundance of npm2 maternal mRNA in the egg was previously established using a teleost fish model for egg quality. The importance of maternal npm2 mRNA for egg developmental competence remains unknown in any vertebrate species. In the present study, we aimed to characterize the contribution of npm2 maternal mRNA to early developmental success in zebrafish using a knockdown strategy. We report here the oocyte-specific expression of npm2 and maternal inheritance of npm2 mRNA in zebrafish eggs. The knockdown of the protein translated from this maternal mRNA results in developmental arrest before the onset of epiboly and subsequent embryonic death, a phenotype also observed in embryos lacking zygotic transcription. Npm2 knockdown also results in impaired transcription of the first-wave zygotic genes. Our results show that npm2 is also a maternal effect gene in a nonmammalian vertebrate species and that maternally inherited npm2 mRNA is crucial for egg developmental competence. We also show that de novo protein synthesis from npm2 maternal mRNA is critical for developmental success beyond the blastula stage and required for zygotic genome activation. Finally, our results suggest that npm2 maternal mRNA is an important molecular factor of egg quality in fish and possibly in all vertebrates.
Variable and low egg quality is a major limiting factor for the development of efficient aquaculture production. This stems from limited knowledge on the mechanisms underlying egg quality in cultured fish. Molecular analyses, such as transcriptomic studies, are valuable tools to identify the most important processes modulating egg quality. However, very few studies have been devoted to this aspect so far. Within this study, the microarray-based transcriptomic analysis of eggs (of different quality) of sea bass (Dicentrarchus labrax) was performed. An Agilent oligo microarray experiment was performed on labelled mRNA extracted from 16 batches of eggs (each batch obtained from a different female) of sea bass, in which over 24,000 published probe arrays were used. We identified 39 differentially expressed genes exhibiting a differential expression between the groups of low (fertilization rate < 60 %) and high (fertilization rate > 60 %) quality. The mRNA levels of eight genes were further analyzed by quantitative PCR. Seven genes were confirmed by qPCR to be differentially expressed in eggs of low and high quality. This study confirmed the importance of some of the genes already reported to be potential molecular quality indicators (mainly rnf213 and irf7), but we also found new genes (mainly usp5, mem-prot, plec, cenpf), which had not yet been reported to be quality-dependent in fish. These results suggest the importance of genes involved in several important processes, such as protein ubiquitination, translation, DNA repair, and cell structure and architecture; these probably being the mechanisms that contribute to egg developmental competence in sea bass.
Oviparous vertebrates produce multiple forms of vitellogenin (Vtg), the major source of yolk nutrients, but little is known about their individual contributions to reproduction and development. This study utilized clustered regularly interspaced short palindromic repeats/CRISPR‐associated protein 9 (CRISPR/Cas9) genome editing to assess essentiality and functionality of zebrafish (Danio rerio) type‐I and type‐III Vtgs. A multiple CRISPR approach was employed to knockout (KO) all genes encoding type‐I vtgs (vtg1, 4, 5, 6, and 7) simultaneously (vtg1‐KO), and the type‐III vtg (vtg3) individually (vtg3‐KO). Results of polymerase chain reaction (PCR) genotyping and sequencing, quantitative PCR, liquid chromatography‐tandem mass spectrometry, and Western blot analysis showed that only vtg6 and vtg7 escaped Cas9 editing. In fish whose remaining type‐I vtgs were incapacitated (vtg1‐KO), and in vtg3‐KO fish, significant increases in Vtg7 transcript and protein levels occurred in liver and eggs, revealing a heretofore‐unknown mechanism of genetic compensation regulating Vtg homeostasis. Egg numbers per spawn were elevated more than 2‐fold in vtg1‐KO females, and egg fertility was approximately halved in vtg3‐KO females. Substantial mortality was evident in vtg3‐KO eggs/embryos after only 8 hr of incubation and in vtg1‐KO embryos after 5 days. Hatching rate and timing were markedly impaired in embryos from vtg mutant mothers and pericardial and yolk sac/abdominal edema and spinal lordosis were evident in the larvae, with feeding and motor activities also being absent in vtg1‐KO larvae. By late larval stages, vtg mutations were either completely lethal (vtg1‐KO) or nearly so (vtg3‐KO). These novel findings offer the first experimental evidence that different types of vertebrate Vtg are essential and have disparate requisite functions at different times during both reproduction and development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.