Photodynamic therapy (PDT) has been clinically employed to treat mainly superficial cancer, such as basal cell carcinoma. This approach can eliminate tumors by direct cytotoxicity, tumor ischemia, or by triggering an immune response against tumor cells. Among the immune-related mechanisms of PDT, the induction of immunogenic cell death (ICD) in target cells is to be cited. ICD is an apoptosis modality distinguished by the emission of damage-associated molecular patterns (DAMP). Therefore, this study aimed to analyze the immunogenicity of CT26 and 4T1 treated with PDT mediated by aluminum-phthalocyanine in nanoemulsion (PDT-AlPc-NE). Different PDT-AlPc-NE protocols with varying doses of energy and AlPc concentrations were tested. The death mechanism and the emission of DAMPs–CRT, HSP70, HSP90, HMGB1, and IL-1β–were analyzed in cells treated in vitro with PDT. Then, the immunogenicity of these cells was assessed in an in vivo vaccination-challenge model with BALB/c mice. CT26 and 4T1 cells treated in vitro with PDT mediated by AlPc IC50 and a light dose of 25 J/cm² exhibited the hallmarks of ICD, i.e., these cells died by apoptosis and exposed DAMPs. Mice injected with these IC50 PDT-treated cells showed, in comparison to the control, increased resistance to the development of tumors in a subsequent challenge with viable cells. Mice injected with 4T1 and CT26 cells treated with higher or lower concentrations of photosensitizer and light doses exhibited a significantly lower resistance to tumor development than those injected with IC50 PDT-treated cells. The results presented in this study suggest that both the photosensitizer concentration and light dose affect the immunogenicity of the PDT-treated cells. This event can affect the therapy outcomes in vivo.
Objetivo: analisar os recentes estudos com a hidroxicloroquina no tratamento da COVID-19. Métodos: comunicação breve relatando os principais resultados com o uso da hidroxicloroquina em ensaios clínicos e o panorama mundial desses estudos. Resultados: a maioria dos ensaios clínicos no mundo é com a hidroxicloroquina, e os resultados com o seu uso são variados. Conclusão: é urgente avaliar melhor a eficácia da hidroxicloroquina no possível tratamento da COVID-19 em pacientes não severos.
A new coronavirus, identified in Wuhan, China, has spread globally, infecting millions of people and causing significant morbidity and mortality. The pandemic state, declared by the World Health Organization on March 11, 2020, transformed the world and made people adapt to social distance to control the spread of the virus. The race against time in search of therapeutic solutions has become essential, and nanotechnology may be able to make vaccines available in record time to stimulate the immunization of individuals. Since the beginning of 2020, scientists and companies are rapidly advancing to make vaccine candidates available at a different rate compared to other pandemics that have existed. This review briefly presents the pros and cons of the third generation vaccines, Moderna / NIAID and Pfizer - BioNTech, which are in phase 3 tests, based on lipid RNA nanoparticles. Great collaborative efforts are being invested so that soon the world population will receive doses of vaccines with proven efficacy and enable increased survival, since the pandemic has already caused many irreversible losses.
Diets rich in omega-3 or -6 fatty acids will produce different profiles for cell membranes phospholipid constitutions. Omegas 3 and 6 are part of the diet and can modulate the inflammatory profile. We evaluated the effects of the oral absorption of fish oil, when associated with a lipid nanoemulsion in an experimental pulmonary inflammatory model. Pulmonary fibrosis is a disease associated with excessive extracellular matrix deposition. We determined to investigate the morphophysiological mechanisms in mice that were pretreated after induction with bleomycin (BLM). The pretreatment was for 21 days with saline solution, sunflower oil (SO), fish oil (FO), and fish oil nanoemulsion (NEW3). The animals received a daily dose of 50 mg/Kg of docosahexaenoic acid DHA and 10 mg/Kg eicosapentaenoic (EPA) (100 mg/Kg), represented by a daily dose of 40 µL of NEW3. The blank group was treated with the same amount daily (40 µL) during the 21 days of pretreatment. The animals were treated with SO and FO, 100 mg/Kg (containing 58 mg/Kg of polyunsaturated fats/higher% linoleic acid) and 100 mg/Kg (50 mg/Kg of DHA and 10 mg/Kg EPA), respectively. A single dose of 5 mg/mL (50 μL) bleomycin sulfate, by the intratracheal surgical method in BALB/cAnNTac (BALB/c). NEW3 significantly reduced fibrotic progression, which can be evidenced by the protection from loss of body mass, increase in respiratory incursions per minute, decreased spacing of alveolar septa, decreased severity of fibrosis, and changes in the respiratory system. NEW3 attenuated the inflammatory changes developed in the experimental model of pulmonary fibrosis, while group SO showed a significant increase in inflammatory changes. This concluded that the presented results demonstrated that is possible to positively modulate the immune and inflamamtory response to an external agressor, by changing the nutitional intake of specific fatty acids, such as omega-3 placed in fish oil. Moreover, these benefits can be improved by the nanoencapsulation of fish oil in lipid nanoemulsions.
Curcumin is a polyphenolic compound, derived from Curcuma longa, and it has several pharmacological effects such as antioxidant, anti-inflammatory, and antitumor. Although it is a pleiotropic molecule, curcumin’s free form, which is lipophilic, has low bioavailability and is rapidly metabolized, limiting its clinical use. With the advances in techniques for loading curcumin into nanostructures, it is possible to improve its bioavailability and extend its applications. In this review, we gather evidence about the comparison of the pharmacokinetics (biodistribution and bioavailability) between free curcumin (Cur) and nanostructured curcumin (Cur-NPs) and their respective relationships with antitumor efficacy. The search was performed in the following databases: Cochrane, LILACS, Embase, MEDLINE/Pubmed, Clinical Trials, BSV regional portal, ScienceDirect, Scopus, and Web of Science. The selected studies were based on studies that used High-Performance Liquid Chromatography (HPLC) as the pharmacokinetics evaluation method. Of the 345 studies initially pooled, 11 met the inclusion criteria and all included studies classified as high quality. In this search, a variety of nanoparticles used to deliver curcumin (polymeric, copolymeric, nanocrystals, nanovesicles, and nanosuspension) were found. Most Cur-NPs presented negative Zeta potential ranging from −25 mV to 12.7 mV, polydispersion index (PDI) ranging from 0.06 to 0.283, and hydrodynamic diameter ranging from 30.47 to 550.1 nm. Selected studies adopted mainly oral and intravenous administrations. In the pharmacokinetics analysis, samples of plasma, liver, tumor, lung, brain, kidney, and spleen were evaluated. The administration of curcumin, in nanoparticle systems, resulted in a higher level of curcumin in tumors compared to free curcumin, leading to an improved antitumor effect. Thus, the use of nanoparticles can be a promising alternative for curcumin delivery since this improves its bioavailability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.