The ever-increasing demand for developing lightweight, high-temperature materials that can operate at elevated temperatures is still a subject of worldwide research and TiAl-based alloys have come to the fore. The conventional methods of manufacturing have been used successfully to manufacture the TiAl-based alloy. However, due to the inherent limitations of the conventional methods to produce large TiAl components with intricate near-net shapes has limit the widespread application and efficiency of the TiAl components produced using conventional methods. Metal additive manufacturing such as Electron Beam Melting technology could manufacture the TiAl alloys with intricate shapes but lack geometrical accuracy. Laser powder bed fusion (LPBF) technology could manufacture the TiAl-based alloys with intricate shapes with geometrical accuracy. However, the inherent high rate of heating and cooling mechanisms of the LPBF process failed to produce crack-free TiAl components. Various preheating techniques have been experimented, to reduce the high thermal gradient and residual stress during the LPBF process that causes the cracking of the TiAl components. Although these techniques have not reached industrial readiness up to now, encouraging results have been achieved.
Due to increasing bacterial resistance to antibiotics, surface coatings of medical devices with antimicrobial agents have come to the fore. These surface coatings on medical devices were basically thin coatings that delaminated from the medical devices due to the fluid environment and the biomechanical activities associated with in-service implants. The conventional methods of manufacturing have been used to alloy metal-based antimicrobial (MBA) agents such as Cu with Ti6Al4V to enhance its antibacterial properties but failed to produce intricate shapes. Additive manufacturing technology, such as laser powder bed fusion (LPBF), could be used to produce the Ti6Al4V–xCu alloy with intricate shapes to enhance osseointegration, but have not been successful for texturing the surfaces of the Ti6Al4V–xCu samples at the nanoscale.
TiAl-based intermetallic alloys have come to the fore as the preferred alloys for high-temperature applications. Conventional methods (casting, forging, sheet forming, extrusion, etc.) have been applied to produce TiAl intermetallic alloys. However, the inherent limitations of conventional methods do not permit the production of the TiAl alloys with intricate geometries. Additive manufacturing technologies such as electron beam melting (EBM) and laser powder bed fusion (LPBF), were used to produce TiAl alloys with complex geometries. EBM technology can produce crack-free TiAl components but lacks geometrical accuracy. LPBF technology has great geometrical precision that could be used to produce TiAl alloys with tailored complex geometries, but cannot produce crack-free TiAl components. To satisfy the current industrial requirement of producing crack-free TiAl alloys with tailored geometries, the paper proposes a new heating model for the LPBF manufacturing process. The model could maintain even temperature between the solidified and subsequent layers, reducing temperature gradients (residual stress), which could eliminate crack formation. The new conceptualized model also opens a window for in situ heat treatment of the built samples to obtain the desired TiAl (γ-phase) and Ti3Al (α2-phase) intermetallic phases for high-temperature operations. In situ heat treatment would also improve the homogeneity of the microstructure of LPBF manufactured samples.
Additive manufacturing (AM), also known as 3D printing, is considered a renaissance of the manufacturing industry. Its unique capability of manufacturing 3D objects with intricate geometrical configurations has been used to produce hospital equipment and personal protective equipment (PPE) in an attempt to curb the spread of the COVID-19 pandemic in South Africa. The technology has been used by different research units to produce ventilators, respirator face masks, oscillating respiratory devices, oxygen connectors, oxygen splitters, non-invasive ventilation helmets, reusable clinician PPE, visor frames for face shields, etc. Despite the efforts of the AM community in South Africa, COVID-19 infections have continued to increase in the country. It came to light that technological interventions (including AM) alone cannot prevent the spread of the virus without the corresponding adaptive behavioural changes, such as adhering to COVID-19 prevention protocols (washing of hands, social distancing, etc.). It could be postulated that the spread of COVID-19 can only be prevented by inter-marrying the technological interventions (AM) with adaptive behavioural changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.