SABRE (Sodium-iodide with Active Background REjection) is a direct dark matter search experiment based on an array of radio-pure NaI(Tl) crystals surrounded by a liquid scintillator veto. Twin SABRE experiments in the Northern and Southern Hemispheres will differentiate a dark matter signal from seasonal and local effects. The experiment is currently in a Proof-of-Principle (PoP) phase, whose goal is to demonstrate that the background rate is low enough to carry out an independent search for a dark matter signal, with sufficient sensitivity to confirm or refute the DAMA result during the following full-scale experimental phase. The impact of background radiation from the detector materials and the experimental site needs to be carefully investigated, including both intrinsic and cosmogenically activated radioactivity. Based on the best knowledge of the most relevant sources of background, we have performed a detailed Monte Carlo study evaluating the expected background in the dark matter search spectral region. The simulation model described in this paper guides the design of the full-scale experiment and will be fundamental for the interpretation of the measured background and hence for the extraction of a possible dark matter signal.
Ultra-pure NaI(Tl) crystals are the key element for a model-independent verification of the long standing DAMA result and a powerful means to search for the annual modulation signature of dark matter interactions. The SABRE collaboration has been developing cutting-edge techniques for the reduction of intrinsic backgrounds over several years. In this paper we report the first characterization of a 3.4 kg crystal, named NaI-33, performed in an underground passive shielding setup at LNGS. NaI-33 has a record low $$^{39}$$ 39 K contamination of 4.3 ± 0.2 ppb as determined by mass spectrometry. We measured a light yield of 11.1 ± 0.2 photoelectrons/keV and an energy resolution of 13.2% (FWHM/E) at 59.5 keV. We evaluated the activities of $$^{226}$$ 226 Ra and $$^{228}$$ 228 Th inside the crystal to be $$5.9\pm 0.6~\upmu $$ 5.9 ± 0.6 μ Bq/kg and $$1.6\pm 0.3~\upmu $$ 1.6 ± 0.3 μ Bq/kg, respectively, which would indicate a contamination from $$^{238}$$ 238 U and $$^{232}$$ 232 Th at part-per-trillion level. We measured an activity of 0.51 ± 0.02 mBq/kg due to $$^{210}$$ 210 Pb out of equilibrium and a $$\alpha $$ α quenching factor of 0.63 ± 0.01 at 5304 keV. We illustrate the analyses techniques developed to reject electronic noise in the lower part of the energy spectrum. A cut-based strategy and a multivariate approach indicated a rate, attributed to the intrinsic radioactivity of the crystal, of $$\sim $$ ∼ 1 count/day/kg/keV in the [5–20] keV region.
The Silicon Vertex Detector of Belle II is a state-of-the-art tracking and vertexing system based on double-sided silicon strip sensors, designed and fabricated by a large international collaboration in the period 2012–2018. Since 2019 it has been in operation providing high quality data with a small number of defective channels (<1%), a large hit-finding efficiency (>99%), a good signal-to-noise ratio (well in excess of 10 for all sensor configurations and tracks). Together with the good control over the alignment, these are all essential factors to achieve good tracking reconstruction and physics performance. In this extended paper we try to document all the aspects of the SVD challenges and achievements, in the spirit of providing information to the broader community and help the development of high quality detector systems, which are essential tools to carry out physics research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.