In closed loop control systems fault isolation becomes extremely difficult in the case of feedbacks being oscillatory due to corrupted signals or malfunctions in actuators. This paper investigates and highlights the development of an off-line fault detection and isolation system for the isolation of faults, which cause oscillatory conditions on a General Electric (GE) Diesel-Electric Locomotive's excitation control system. The paper illustrates the use of artificial neural networks as a replacement to classical analytical models used for residual generation. The artificial neural network model's design is based on model-based dedicated observer theory to isolate sensor, as well as component faults, where observer theory is utilised to effectively select input-output data configurations for detection of sensor and component faults causing oscillations. Residual Evaluation is done with the use of a moving average filter incorporated with the simple thresholding technique. The results indicated 100% accuracy for the detection and isolation of the component or sensor responsible for causing excessive oscillation in the excitation control system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.