This research aims to determine the maximum or minimum value of a Fuzzy Support Vector Machine (FSVM) Algorithm using the optimization function. SVM is considered as an effective method of data classification, as opposed to FSVM, which is less effective on large and complex data because of its sensitivity to outliers and noise. One of the techniques used to overcome this inefficiency is fuzzy logic with its ability to select the right membership function, which significantly affects the effectiveness of the FSVM algorithm performance. This research was carried out using the Gaussian membership function and the Distance-Based Similarity Measurement consisting of the Euclidean, Manhattan, Chebyshev, and Minkowsky distance methods. Subsequently, the optimization of the FSVM classification process was determined using four proposed FSVM models and normal SVM as comparison references. The results showed that the method tends to eliminate the impact of noise and enhance classification accuracy effectively. FSVM provides the best and highest accuracy value of 94% at a penalty parameter value of 1000 using the Chebyshev distance matrix. Furthermore, the model proposed will be compared to the performance evaluation model in preliminary studies (Xiao Kang et al., 2018). The result further showed that using FSVM with Chebyshev distance matrix and a Gaussian membership function provides a better performance evaluation value. Doi: 10.28991/HIJ-2021-02-04-02 Full Text: PDF
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.