Background and Objectives: Previous in vitro studies demonstrated the potential utility of benzoporphyrin derivative monoacid ring A (BPD) photodynamic therapy (PDT) for vascular destruction. Moreover, the effects of PDT were enhanced when this intervention was followed immediately by pulsed dye laser (PDL) irradiation (PDT/ PDL). We further evaluate vascular effects of PDT alone, PDL alone and PDT/PDL in an in vivo rodent dorsal skinfold model. Study Design/Materials and Methods: A dorsal skinfold window chamber was installed surgically on female Sprague-Dawley rats. One milligram per kilogram of BPD solution was administered intravenously via a jugular venous catheter. Evaluated interventions were: control (no BPD, no light), PDT alone (576 nm, 16 minutes exposure time, 15 minutes post-BPD injection, 10 mm spot), PDL alone at 7 J/cm 2 (585 nm, 1.5 ms pulse duration, 7 mm spot), PDL alone at 10 J/cm 2 , PDT/PDL (PDL at 7 J/cm 2 ), and PDT/PDL (PDL at 10 J/cm 2 ). To assess changes in microvascular blood flow, laser speckle imaging was performed before, immediately after, and 18 hours post-intervention. Results: Epidermal irradiation was accomplished without blistering, scabbing or ulceration. A reduction in perfusion was achieved in all intervention groups. PDT/PDL at 7 J/ cm 2 resulted in the greatest reduction in vascular perfusion (56%). Conclusions: BPD PDT can achieve safe and selective vascular flow reduction. PDT/PDL can enhance diminution of microvascular blood flow. Our results suggest that PDT and PDT/PDL should be evaluated as alternative therapeutic options for treatment of hypervascular skin lesions including port wine stain birthmarks. Lasers Surg. Med.
Background and Objectives: The degree of port wine stain (PWS) blanching following pulsed dye laser (PDL) therapy remains variable and unpredictable. Because of the limitations of current PDL therapy, alternative treatment approaches should be explored. The objective was to evaluate a novel methodology for selective vascular damage, combined photodynamic (PDT) and photothermal (PDL) treatment, using the in vivo chick chorioallantoic membrane (CAM) model. Study Design/Materials and Methods: Thirty microliters of benzoporphyrin derivative monoacid ring A (BPD) solution was administered intraperitoneally into chick embryos at day 12 of development. Study groups were: (1) control (no BPD, no light); (2) BPD alone; (3) continuous wave irradiation (CW) alone (576 nm, 60 mW/cm 2 , 125 seconds); (4) CW þ PDL; (5) BPDþPDL; (6) PDT (BPDþCW); (7) PDL alone (585 nm, 4 J/cm 2 ); and (8) PDTþPDL (BPD þ CW followed immediately by PDL). Vessels were videotaped prior to, and at 1 hour postintervention and then assessed for damage based on the following scale: 0, no damage; 1, coagulation; 1.5, vasoconstriction; 2.0, coagulationþvasoconstriction; 2.5, angiostasis; 3.0, hemorrhage. Damage scores were weighted by vessel ''order.'' Results: PDT þ PDL resulted in significantly (P < 0.01) more severe vascular damage than was observed in any other study group: 127% more than PDT, 47% more than PDL alone. Conclusions: PDT þ PDL is a novel and promising approach for selective vascular damage and may offer a more effective method for treatment of PWS and other vascular skin lesions.
Nanoscience offers the potential for great advances in medical technology and therapies in the form of nanomedicine. As such, developing controllable, predictable, and effective, nanoparticle-based therapeutic systems remains a significant challenge. Many polymer-based nanoparticle systems have been reported to date, but few harness materials with accepted biocompatibility. Phosphorylcholine (PC) based biomimetic materials have a long history of successful translation into effective commercial medical technologies. This study investigated the synthesis, characterisation, nanoprecipitation, and in vitro cellular uptake kinetics of PC-based polymeric nanoparticle micelles (PNM) formed by the biocompatible and pH responsive block copolymer poly(2-methacryloyloxyethyl phosphorylcholine)- b-poly(2-(diisopropylamino)ethyl methacrylate) (MPC-DPA). Atom transfer radical polymerisation (ATRP), and gel permeation chromatography (GPC) were used to synthesise and characterise the well-defined MPC100-DPA100 polymer, revealing organic GPC, using evaporative light scatter detection, to be more accurate than aqueous GPC for this application. Subsequent nanoprecipitation investigations utilising photon correlation spectroscopy (PCS) revealed PNM size increased with polymer concentration, and conferred Cryo-stability. PNM diameters ranged from circa 64–69nm, and increased upon hydrophobic compound loading, circa 65–71nm, with loading efficiencies of circa 60% achieved, whilst remaining monodisperse. In vitro studies demonstrated that the PNM were of low cellular toxicity, with colony formation and MTT assays, utilising V79 and 3T3 cells, yielding comparable results. Investigation of the in vitro cellular uptake kinetics revealed rapid, 1h, cellular uptake of MPC100-DPA100 PNM delivered fluorescent probes, with fluorescence persistence for 48h. This paper presents the first report of these novel findings, which highlight the potential of the system for nanomedicine application development
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.