Este artigo tem como objetivo apresentar as idéias para o desenvolvimento de um framework para balanceamento de carga chamado GetLB. Considerando o contexto de transferência eletrônica de fundos (TEF), GetLB oferece uma nova forma de organizar as interações entre o chaveador e as máquinas processadoras. Esta organização permite que o chaveador combine informações atualizadas para a execução de um algoritmo de programação dinâmica em vez de usar a abordagem Round-Robin entre as máquinas de processamento. O algoritmo de agendamento de GetLB divide as transações em diferentes tipos, combinando suas necessidades de CPU, memória e disco de dados de máquinas processadoras para oferecer um balanceamento de carga eficiente. Implementou-se um protótipo com RMI e testes revelaram que o quadro é viável para processamento de transações sobre os ambientes homogêneos e heterogêneos. Além disso, a avaliação apresentou as vantagens da adoção de algoritmos GetLB em vez da abordagem Round-Robin tradicional.
Abstract. This article aims to present the first ideas for developing a framework for load-balancing called GetLB. Considering the electronic funds transfer (EFT) context, GetLB offers a new scheduling heuristic that optimizes the selection of Processing Machines to execute transactions in a processing center. Instead of using the RoundRobin typical approach, the proposal combines data from computation, network, memory and disc metrics for producing a unified scheduling approach, denoted LL (i,j). The proposal calculates the load level of executing an i-typed transaction on a j specific Processing Machine. Furthermore, the load-balancing framework also enables notifications triggered by Processing Machines to the Dispatcher for informing it about asynchronous events such as administrative tasks or transactions disposing. Aiming to evaluate GetLB, a simple prototype was developed by using Java RMI. Preliminary tests revealed that the framework is feasible, outperforming the number of queued transactions obtained with the Round-Robin approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.