The Brazil Current (BC) is likely the least observed and investigated subtropical western boundary current in the world. This study proposes a simple and systematic methodology to estimate quasi-synoptic crosssectional speeds of the BC within the Santos Basin (23 • S − 26 • S) based on the dynamic method using several combinations of data: Conductivity, temperature, and depth (CTD), temperature profiles, CTD and vessel-mounted Acoustic Doppler Current Profiler (VMADCP), and temperature profiles and VMADCP. All of the geostrophic estimates agree well with lowered Acoustic Doppler Current Profiler (LADCP) velocity observations and yield volume transports of -5.56 ±1.31 and 2.50 ±1.01 Sv for the BC and the Intermediate Western Boundary Current (IWBC), respectively. The LADCP data revealed that the BC flows southwestward and is ∼100 km wide, 500 m deep, and has a volume transport of approximately -5.75 ±1.53 Sv and a maximum speed of 0.59 m s −1 . Underneath the BC, the IWBC flows northeastward and has a vertical extent of approximately 1,300 m, a width of ∼60 km, a maximum
The pathways and transports of Labrador Sea Water (LSW) within the southward‐flowing lower limb of the Atlantic Meridional Overturning Circulation are studied using 12 years of Argo profiles and subsurface Argo drift data. Consistent with previous studies, the results show clear evidence for interior pathways of LSW that separate from the western boundary near the Grand Banks and flow eastward and then southward around a large‐scale deep anticyclonic gyre in the northern subtropical Atlantic. Most of the LSW exported into the interior recirculates in the Newfoundland Basin (9.3 ± 3.5 Sv). However, approximately 3.2 ± 0.4 Sv cross the Mid‐Atlantic Ridge and flow southward east of the Azores. This branch feeds a westward quasi‐zonal pathway that recrosses the Ridge and returns to the western boundary around 30°N.
Understanding the variability of the Atlantic Meridional Overturning Circulation is essential for better predictions of our changing climate. Here we present an updated time series (August 2014 to June 2020) from the Overturning in the Subpolar North Atlantic Program. The 6-year time series allows us to observe the seasonality of the subpolar overturning and meridional heat and freshwater transports. The overturning peaks in late spring and reaches a minimum in early winter, with a peak-to-trough range of 9.0 Sv. The overturning seasonal timing can be explained by winter transformation and the export of dense water, modulated by a seasonally varying Ekman transport. Furthermore, over 55% of the total meridional freshwater transport variability can be explained by its seasonality, largely owing to overturning dynamics. Our results provide the first observational analysis of seasonality in the subpolar North Atlantic overturning and highlight its important contribution to the total overturning variability observed to date.
The Subpolar North Atlantic is prone to recurrent extreme freshening events called Great Salinity Anomalies (GSAs). Here, we combine hydrographic ocean analyses and moored observations to document the arrival, spreading, and impacts of the most recent GSA in the Irminger Sea. This GSA is associated with a rapid freshening of the upper Irminger Sea between 2015 and 2020, culminating in annually averaged salinities as low as the freshest years of the 1990s and possibly since 1960. Upon the GSA propagation into the Irminger Sea over the Reykjanes Ridge, the boundary currents rapidly advected its signal around the basin within months while fresher waters slowly spread and accumulated into the interior. The anomalies in the interior freshened waters produced by deep convection during the 2017–2018 winter and actively contributed to the suppression of deep convection in the following two winters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.