As additive manufacturing (AM) technologies have been gaining popularity in the plastic processing sector, it has become a major concern to establish closed-loop recycling strategies to maximize the value of the materials processed, therefore enhancing their sustainability. However, there are challenges to overcome related to the performance of recycled materials since, after mechanical recycling, the molecular degradation of thermoplastics shifts their performance and processability. In this work, it was hypothesized that the incorporation of a chain extender (CE) during the reprocessing would allow us to overcome these drawbacks. To attest this conjecture, the influence of 1,3-Bis(4,5-dihydro-2-oxazolyl)benzene (PBO), used as a CE, on mechanical, thermal, and rheological properties of polilactic acid (PLA) was studied. Furthermore, a closed-loop recycling system based on Fused Filament Fabrication (FFF) was attempted, consisting of the material preparation, filament extrusion, production of 3D components, and mechanical recycling steps. PBO partially recovered the recycled PLA mechanical performance, reflected by an increase in both tensile modulus (+13%) and tensile strength (+121%), when compared with recycled PLA without PBO. Printability tests were conducted, with the material’s brittle behavior being the major constraint for successfully establishing a closed-loop recycling scheme for FFF applications.
With the increase use of plastics, there is currently a concern with the waste of materials, resulting in a series of challenges and opportunities for the waste management sector. In the present work, poly(ethylene terephthalate) (PET) foam was produced from recycled PET (RPET) from used water bottles. The recycled material was manually prepared and foamed in batches with the assistance of nitrogen gas as the physical blowing agent. RPET was characterized using Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA), Fourier Transform Infrared Spectroscopy (FTIR) and Thermogravimetric Analysis (TGA). The influence of the pressure on the foam formation was studied and the results obtained showed that this variable influences the final product characteristics. To evaluate the behavior of the foams, their morphology, response to deformation when subject to compression and their thermal conductivities were studied. The morphology analysis showed that operating at higher-pressure results in bigger pore size but also in an increased pore size heterogeneous distribution, and foams that exhibit a higher thermal conductivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.