The N-acylhydrazone (NAH) moiety is considered a privileged structure, being present in many compounds with diverse pharmacological activities. Among the activities attributed to NAH derivatives anti-inflammatory and analgesic ones are recurrent. As part of a research program aiming at the design of new analgesic and anti-inflammatory lead-candidates, a series of cyclohexyl-N-acylhydrazones 10–26 were structurally designed from molecular modification on the prototype LASSBio-294, representing a new class of cycloalkyl analogues. Compounds 10–26 and their conformationally restricted analogue 9 were synthetized and evaluated as analgesic and anti-inflammatory agents in classical pharmacologic protocols. The cyclohexyl-N-acylhydrazones 10–26 and the cyclohexenyl analogue 9 showed great anti-inflammatory and/or analgesic activities, but compound 13 stood out as a new prototype to treat acute and chronic painful states due to its important analgesic activity in a neuropathic pain model.
Neuropathy is a serious complication of diabetes that has a significant socioeconomic impact, since it frequently demands high levels of health care consumption and compromises labor productivity. Recently, LASSBio-1471 (3) was demonstrated to improve oral glucose tolerance, reduce blood glucose levels, and display an anti-neuropathy effect in a murine streptozotocin-induced diabetes model. In the present work, we describe the design, synthesis, solubility, plasma stability, and pharmacological evaluation of novel sulfonylhydrazone derivatives (referred to herein as compounds 4–9), which were designed by molecular modification based on the structure of the prototype LASSBio-1471 (3). Among the compounds tested, better plasma stability was observed with 4, 5, and 9 in comparison to compounds 6, 7, and 8. LASSBio-1773 (7), promoted not only hypoglycemic activity but also the reduction of thermal hyperalgesia and mechanical allodynia in a murine model of streptozotocin-induced diabetic neuropathic pain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.