Currently, nanostructured compounds have been standing out for their optical, mechanical, and chemical features and for the possibilities of manipulation and regulation of complex biological processes. One of these compounds is boron nitride nanotubes (BNNTs), which are a nanostructured material analog to carbon nanotubes, but formed of nitrogen and boron atoms. BNNTs present high thermal stability along with high chemical inertia. Among biological applications, its biocompatibility, cellular uptake, and functionalization potential can be highlighted, in addition to its eased utilization due to its nanometric size and tumor cell internalization. When it comes to new forms of therapy, we can draw attention to boron neutron capture therapy (BNCT), an experimental radiotherapy characterized by a boron-10 isotope carrier inside the target and a thermal neutron beam focused on it. The activation of the boron-10 atom by a neutron generates a lithium atom, a gamma ray, and an alpha particle, which can be used to destroy tumor tissues. The aim of this work was to use BNNTs as a boron-10 carrier for BNCT and to demonstrate its potential. The nanomaterial was characterized through XRD, FTIR, and SEM. The WST-8 assay was performed to confirm the cell viability of BNNTs. The cells treated with BNNTs were irradiated with the neutron beam of a Triga reactor, and the apoptosis caused by the activation of the BNNTs was measured with a calcein AM/propidium iodide test. The results demonstrate that this nanomaterial is a promising candidate for cancer therapy through BNCT.
In the present study, boron nitride nanotubes (BNNTs) were synthesized from an innovative process and functionalized with a glycol chitosan polymer in CDTN (Centro de Desenvolvimento da Tecnologia Nuclear) laboratories. As a means of studying their in vivo biodistribution behavior, these nanotubes were radiolabeled with (99m)Tc and injected in mice. Their size, distribution, and homogeneity were determined by photon correlation spectroscopy (PCS), while their zeta potential was determined by laser Doppler anemometry. The morphology and structural organization were evaluated by scanning electron microscopy (SEM). The functionalization in the nanotubes was evaluated by thermogravimetry analysis (TGA) and Fourier transformer infrared spectroscopy. The results showed that BNNTs were obtained and functionalized successfully, reaching a mean size and dispersity deemed adequate for in vivo studies. The BNNTs were also evaluated by ex vivo biodistribution studies and scintigraphic imaging in healthy mice. The results showed that nanostructures, after 24h, having accumulated in the liver, spleen and gut, and eliminated via renal excretion. The findings from this study reveal a potential application of functionalized BNNTs as new potential drugs or radioisotope nanocarriers to be applied in therapeutic procedures.
Nanostructured materials have been widely studied concerning their potential biomedical applications, primarily to selectively carry specific drugs or molecules within a tissue or organ. In this context, boron nitride nanotubes (BNNTs) have generated considerable interest in the scientific community because of their unique properties, presenting good chemical inertness and high thermal stability. Among the many applications proposed for BNNTs in the biomedical field in recent years, the most important include their use as biosensors, nanovectors for the delivery of proteins, drugs, and genes. In the present study, BNNTs were synthesized, purified, and functionalized with glycol chitosan through a chemical process, yielding the BNNT-GC. The size of BNNT-GC was reduced using an ultrasound probe. Two samples with different sizes were selected for in vitro assays. The nanostructures were characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA), and dynamic light scattering (DLS). The in vitro assays MTT and neutral red (NR) were performed with NIH-3T3 and A549 cell lines and demonstrated that this material is not cytotoxic. Furthermore, the BNNT-GC was applied in gene transfection of plasmid pIRES containing a gene region that express a green fluorescent protein (GFP) in NIH-3T3 and A549 cell lines. The gene transfection was characterized by fluorescent protein produced in the cells and pictured by fluorescent microscopy. Our results suggest that BNNT-GC has moderate stability and presents great potential as a gene carrier agent in nonviral-based therapy, with low cytotoxicity and good transfection efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.